We show that partial mass concentration can happen for stationary solutions of aggregation–diffusion equations with homogeneous attractive kernels in the fast diffusion range. More precisely, we prove that the free energy admits a radial global minimizer in the set of probability measures which may have part of its mass concentrated in a Dirac delta at a given point. In the case of the quartic interaction potential, we find the exact range of the diffusion exponent where concentration occurs in space dimensions [Formula: see text]. We then provide numerical computations which suggest the occurrence of mass concentration in all dimensions [Formula: see text], for homogeneous interaction potentials with higher power.
more »
« less
A delayed reaction–diffusion viral infection model with nonlinear incidences and cell-to-cell transmission
In this paper, we propose a reaction–diffusion viral infection model with nonlinear incidences, cell-to-cell transmission, and a time delay. We impose the homogeneous Neumann boundary condition. For the case where the domain is bounded, we first study the well-posedness. Then we analyze the local stability of homogeneous steady states. We establish a threshold dynamics which is completely characterized by the basic reproduction number. For the case where the domain is the whole Euclidean space, we consider the existence of traveling wave solutions by using the cross-iteration method and Schauder’s fixed point theorem. Finally, we study how the speed of spread in space affects the spread of cells and viruses. We obtain the existence of the wave speed, which is dependent on the diffusion coefficient.
more »
« less
- Award ID(s):
- 1950254
- PAR ID:
- 10350854
- Date Published:
- Journal Name:
- International Journal of Biomathematics
- Volume:
- 14
- Issue:
- 08
- ISSN:
- 1793-5245
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We determine the asymptotic spreading speed of the solutions of a Fisher-KPP reaction-diffusion equation, starting from compactly supported initial data, when the diffusion coefficient is a fixed bounded monotone profile that is shifted at a given forcing speed and satisfies a general uniform ellipticity condition. Depending on the monotonicity of the profile, we are able to characterize this spreading speed as a function of the forcing speed and the two linear spreading speeds associated to the asymptotic problems at \begin{document}$$ x = \pm \infty $$\end{document}. Most notably, when the profile of the diffusion coefficient is increasing we show that there is an intermediate range for the forcing speed where spreading actually occurs at a speed which is larger than the linear speed associated with the homogeneous state around the position of the front. We complement our study with the construction of strictly monotone traveling front solutions with strong exponential decay near the unstable state when the profile of the diffusion coefficient is decreasing and in the regime where the forcing speed is precisely the selected spreading speed.more » « less
-
Some dividing cells sense their shape by becoming polarized along their long axis. Cell polarity is controlled in part by polarity proteins, like Rho GTPases, cycling between active membrane-bound forms and inactive cytosolic forms, modeled as a “wave-pinning” reaction-diffusion process. Does shape sensing emerge from wave pinning? We show that wave pinning senses the cell’s long axis. Simulating wave pinning on a curved surface, we find that high-activity domains migrate to peaks and troughs of the surface. For smooth surfaces, a simple rule of minimizing the domain perimeter while keeping its area fixed predicts the final position of the domain and its shape. However, when we introduce roughness to our surfaces, shape sensing can be disrupted, and high-activity domains can become localized to locations other than the global peaks and valleys of the surface. On rough surfaces, the domains of the wave-pinning model are more robust in finding the peaks and troughs than the minimization rule, although both can become trapped in steady states away from the peaks and valleys. We can control the robustness of shape sensing by altering the Rho GTPase diffusivity and the domain size. We also find that the shape-sensing properties of cell polarity models can explain how domains localize to curved regions of deformed cells. Our results help to understand the factors that allow cells to sense their shape—and the limits that membrane roughness can place on this process.more » « less
-
null (Ed.)Abstract Recombination has been shown to contribute to human immunodeficiency virus-1 (HIV-1) evolution in vivo, but the underlying dynamics are extremely complex, depending on the nature of the fitness landscapes and of epistatic interactions. A less well-studied determinant of recombinant evolution is the mode of virus transmission in the cell population. HIV-1 can spread by free virus transmission, resulting largely in singly infected cells, and also by direct cell-to-cell transmission, resulting in the simultaneous infection of cells with multiple viruses. We investigate the contribution of these two transmission pathways to recombinant evolution, by applying mathematical models to in vitro experimental data on the growth of fluorescent reporter viruses under static conditions (where both transmission pathways operate), and under gentle shaking conditions, where cell-to-cell transmission is largely inhibited. The parameterized mathematical models are then used to extrapolate the viral evolutionary dynamics beyond the experimental settings. Assuming a fixed basic reproductive ratio of the virus (independent of transmission pathway), we find that recombinant evolution is fastest if virus spread is driven only by cell-to-cell transmission and slows down if both transmission pathways operate. Recombinant evolution is slowest if all virus spread occurs through free virus transmission. This is due to cell-to-cell transmission 1, increasing infection multiplicity; 2, promoting the co-transmission of different virus strains from cell to cell; and 3, increasing the rate at which point mutations are generated as a result of more reverse transcription events. This study further resulted in the estimation of various parameters that characterize these evolutionary processes. For example, we estimate that during cell-to-cell transmission, an average of three viruses successfully integrated into the target cell, which can significantly raise the infection multiplicity compared to free virus transmission. In general, our study points towards the importance of infection multiplicity and cell-to-cell transmission for HIV evolution.more » « less
-
Motivated by the open problem of large-data global existence for the non-cutoff Boltzmann equation, we introduce a model equation that in some sense disregards the anisotropy of the Boltzmann collision kernel. We refer to this model equation as isotropic Boltzmann by analogy with the isotropic Landau equation introduced by Krieger and Strain (2012) [35]. The collision operator of our isotropic Boltzmann model converges to the isotropic Landau collision operator under a scaling limit that is analogous to the grazing collisions limit connecting (true) Boltzmann with (true) Landau. Our main result is global existence for the isotropic Boltzmann equation in the space homogeneous case, for certain parts of the “very soft potentials” regime in which global existence is unknown for the space homogeneous Boltzmann equation. The proof strategy is inspired by the work of Gualdani and Guillen (2022) [22] on isotropic Landau, and makes use of recent progress on weighted fractional Hardy inequalities.more » « less
An official website of the United States government

