ABSTRACT:Creation of a fracture network in a hydraulic fracturing process is essential for subsurface energy extraction and CO2 sequestration. It is facilitated by reactivation of pre-existing intersecting weak layers and cemented cracks in the rock. In this study, a poromechanical model is developed for the hydraulic fracturing process in rocks containing such pre-existing weak layers. Based on the mixture theory, the crack band model is used to simulate the growth of a crack system. The governing equations with the parameters for hydromechanical coupling are derived, to describe the evolution of the opening and branching of cracks caused by water injection. Microplane model M7 is adopted to characterize the deformation and fracturing of the solid skeleton of the rock, and the Poiseuille law is used to characterize fluid flow through the hydraulic fractures. Numerical simulations are performed to reproduce and interpret recently published laboratory-scale hydraulic fracturing experiments conducted at Los Alamos National Laboratory (LANL). In these experiments, the rock was represented by confined plaster slabs containing orthogonal intersecting weak layers of higher porosity. Numerical simulations reveal how poromechanical characteristics such as the Biot coefficient and the fluid injection rate lead to various typical fracture modes observed in the experiments. These modes include formation of one dominant planar crack or various orthogonal fracture networks.
more »
« less
Probabilistic Estimation of Levelized Cost of Electricity from Using Geologically Stored CO2 for Geothermal Energy Production
The use of geologically stored CO2 as a geothermal heat extraction fluid can take advantage of the beneficial thermophysical characteristics of CO2 that can render it a more effective heat extraction fluid than the brine that exists in the aquifers. Some of these characteristics include a higher mobility (inverse kinematic viscosity) in reservoir conditions and a highly temperature-dependent density that can result in a naturally self-convecting thermosiphon between injection and production wells. This thermosiphon may reduce or eliminate the need for subsurface pumps—and the associated parasitic pumping power—for fluid circulation. Part of the utility of such a CO2 capture, utilization, and storage (CCUS) system is the possibility to generate baseload or dispatchable electricity with levelized costs of electricity (LCOEs) that are on par with the LCOEs of other energy technologies of regional electricity systems.
more »
« less
- PAR ID:
- 10350881
- Date Published:
- Journal Name:
- Proceedings of the 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With the fast evolution in greenhouse gas (GHG) emissions (e.g., CO2, N2O) caused by fossil fuel combustion and global warming, climate change has been identified as a critical threat to the sustainable development of human society, public health, and the environment. To reduce GHG emissions, besides minimizing waste heat production at the source, an integrated approach should be adopted for waste heat management, namely, waste heat collection and recycling. One solution to enable waste heat capture and conversion into useful energy forms (e.g., electricity) is employing solid-state energy converters, such as thermoelectric generators (TEGs). The simplicity of thermoelectric generators enables them to be applied in various industries, specifically those that generate heat as the primary waste product at a temperature of several hundred degrees. Nevertheless, thermoelectric generators can be used over a broad range of temperatures for various applications; for example, at low temperatures for human body heat harvesting, at mid-temperature for automobile exhaust recovery systems, and at high temperatures for cement industries, concentrated solar heat exchangers, or NASA exploration rovers. We present the trends in the development of thermoelectric devices used for thermal management and waste heat recovery. In addition, a brief account is presented on the scientific development of TE materials with the various approaches implemented to improve the conversion efficiency of thermoelectric compounds through manipulation of Figure of Merit, a unitless factor indicative of TE conversion efficiency. Finally, as a case study, work on waste heat recovery from rotary cement kiln reactors is evaluated and discussed.more » « less
-
Abstract Thermoelectric generators convert heat energy to electricity and can be used for waste heat recovery, enabling sustainable development. Selective Laser Melting (SLM) based additive manufacturing process is a scalable and flexible method that has shown promising results in manufacturing high zT Bi2Te3 material and is possible to be extended to other material classes such as Mg2Si. The physical phenomena of melting and solidification were investigated for SLM-based manufacturing of thermoelectric (Mg2Si) powders through comprehensive numerical models developed in MATLAB. In this study, Computational Fluid Dynamics (CFD)-based techniques were employed to solve conservation equations, enabling a detailed understanding of temperature evolution within the molten pool. This approach was critical for optimizing processing parameters in our investigation, which were also used for printing the Mg2Si powders using SLM. Additionally, a phase field-based model was developed to simulate the directional solidification of the Mg2Si in MATLAB. Microstructural parameters were studied to correlate the effects of processing parameters to the microstructure of Mg2Si.more » « less
-
Abstract We present a mechanism for thermal cycling that does not require electricity; instead, the device functions as a heat engine and requires only a generic heat source and a shape memory alloy (SMA) spring. The SMA spring mechanically translates to a low-temperature reservoir when heated, and the subsequent cooling of the spring causes translation back to a high-temperature reservoir. The usefulness of the mechanism is displayed by performing the quantitative polymerase chain reaction (qPCR), an important biological assay that requires thermal cycling for amplification of nucleic acids. The ability to perform qPCR with a generic heat source enables a variety of significant health diagnostic tests to be performed in resource limited settings, where electricity access may not be available or reliable. We demonstrate robust thermal cycling using a direct flame, sunlight, and electricity as heat sources, with maximum heating and cooling rates of 4.4 °C s−1and −2.7 °C s−1, respectively.more » « less
-
Climate change mitigation by decreasing worldwide CO2 emissions is an urgent and demanding challenge that requires innovative technical solutions. This work, inspired by vanadium redox flow batteries (VRFB), introduces an integrated electrochemical process for carbon capture and energy storage. It utilizes established vanadium and ferricyanide redox couples for pH modulation for CO2 desorption and absorbent regeneration. The developed process consumes electricity during the daytime─when renewable electricity is available─to desorb CO2 and charge the cell, and it can regenerate the absorbent for further CO2 absorption while releasing electricity to the grid during nighttime when solar power is unavailable. This research explores the process fundamentals and scalability potential, through an extensive study of the system’s thermodynamics, transport phenomena, kinetics, and bench-scale operations. Cyclic voltammetry (CV) was utilized to study the thermodynamics of the process, mapping the redox profiles to identify ideal potential windows for operation. The CV results indicated that an overpotential of approximately 0.3 V was required for driving redox reactions. Additionally, polarization studies were conducted to select the practical operating potential, identifying 0.5 V as optimal for the CO2 desorption cycle to provide sufficient polarity to overcome activation barriers in addition to the Nernstian potential. Mass transfer analysis balanced conductivity and desorption efficiency, with a 1:1 ratio identified as optimal for redox-active species and background electrolyte concentration. To further enhance the kinetics of the redox reactions, plasma treatment of electrode surfaces was implemented, resulting in a 43% decrease in charge transfer resistance, as measured by electrochemical impedance spectroscopy (EIS) analysis. Finally, a bench-scale operation of the system demonstrated an energy consumption of 54 kJ/mol CO2, which is competitive with other electrochemical carbon capture technologies. Besides its energy competitiveness, the process offers multiple additional advantages, including the elimination of precious metal electrodes, oxygen insensitivity in flue gas, scalability inspired by VRFB technology, and the unique ability to function as a battery during the absorbent regeneration process, enabling efficient day-night operation.more » « less
An official website of the United States government

