skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep generative model with hierarchical latent factors for time series anomaly detection.
Multivariate time series anomaly detection has become an active area of research in recent years, with Deep Learning models outperforming previous approaches on benchmark datasets. Among reconstruction-based models, most previous work has focused on Variational Autoencoders and Generative Adversarial Networks. This work presents DGHL, a new family of generative models for time series anomaly detection, trained by maximizing the observed likelihood by posterior sampling and alternating back-propagation. A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently. Despite relying on posterior sampling, it is computationally more efficient than current approaches, with up to 10x shorter training times than RNN based models. Our method outperformed current state-of-the-art models on four popular benchmark datasets. Finally, DGHL is robust to variable features between entities and accurate even with large proportions of missing values, settings with increasing relevance with the advent of IoT. We demonstrate the superior robustness of DGHL with novel occlusion experiments in this literature. Our code is available at https://github. com/cchallu/dghl.  more » « less
Award ID(s):
2015577
PAR ID:
10351395
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Artificial Intelligence and Statistics (AISTAT 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Deep generative learning cannot only be used for generating new data with statistical characteristics derived from input data but also for anomaly detection, by separating nominal and anomalous instances based on their reconstruction quality. In this paper, we explore the performance of three unsupervised deep generative models—variational autoencoders (VAEs) with Gaussian, Bernoulli, and Boltzmann priors—in detecting anomalies in multivariate time series of commercial-flight operations. We created two VAE models with discrete latent variables (DVAEs), one with a factorized Bernoulli prior and one with a restricted Boltzmann machine (RBM) with novel positive-phase architecture as prior, because of the demand for discrete-variable models in machine-learning applications and because the integration of quantum devices based on two-level quantum systems requires such models. To the best of our knowledge, our work is the first that applies DVAE models to anomaly-detection tasks in the aerospace field. The DVAE with RBM prior, using a relatively simple—and classically or quantum-mechanically enhanceable—sampling technique for the evolution of the RBM’s negative phase, performed better in detecting anomalies than the Bernoulli DVAE and on par with the Gaussian model, which has a continuous latent space. The transfer of a model to an unseen dataset with the same anomaly but without re-tuning of hyperparameters or re-training noticeably impaired anomaly-detection performance, but performance could be improved by post-training on the new dataset. The RBM model was robust to change of anomaly type and phase of flight during which the anomaly occurred. Our studies demonstrate the competitiveness of a discrete deep generative model with its Gaussian counterpart on anomaly-detection problems. Moreover, the DVAE model with RBM prior can be easily integrated with quantum sampling by outsourcing its generative process to measurements of quantum states obtained from a quantum annealer or gate-model device. 
    more » « less
  2. Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the 1950s. However, in recent years there has been an explosion of interest in this topic, much of it driven by the success of deep learning in other domains and for other time series tasks. Most of these papers test on one or more of a handful of popular benchmark datasets, created by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majority of the individual exemplars in these datasets suffer from one or more of four flaws. Because of these four flaws, we believe that many published comparisons of anomaly detection algorithms may be unreliable, and more importantly, much of the apparent progress in recent years may be illusionary. In addition to demonstrating these claims, with this paper we introduce the UCR Time Series Anomaly Archive. We believe that this resource will perform a similar role as the UCR Time Series Classification Archive, by providing the community with a benchmark that allows meaningful comparisons between approaches and a meaningful gauge of overall progress 
    more » « less
  3. With the booming of online service systems, anomaly detection on multivariate time series, such as a combination of CPU utilization, average response time, and requests per second, is important for system reliability. Although a collection of learning-based approaches have been designed for this purpose, our empirical study shows that these approaches suffer from long initialization time for sufficient training data. In this paper, we introduce the Compressed Sensing technique to multivariate time series anomaly detection for rapid initialization. To build a jump-starting anomaly detector, we propose an approach named JumpStarter. Based on domainspecific insights, we design a shape-based clustering algorithm as well as an outlier-resistant sampling algorithm for JumpStarter.With real-world multivariate time series datasets collected from two Internet companies, our results show that JumpStarter achieves an average F1 score of 94.12%, significantly outperforming the state-of-the-art anomaly detection algorithms, with a much shorter initialization time of twenty minutes. We have applied JumpStarter in online service systems and gained useful lessons in real-world scenarios. 
    more » « less
  4. Many commercial and open-source models claim to detect machine-generated text with extremely high accuracy (99% or more). However, very few of these detectors are evaluated on shared benchmark datasets and even when they are, the datasets used for evaluation are insufficiently challenging—lacking variations in sampling strategy, adversarial attacks, and open-source generative models. In this work we present RAID: the largest and most challenging benchmark dataset for machine-generated text detection. RAID includes over 6 million generations spanning 11 models, 8 domains, 11 adversarial attacks and 4 decoding strategies. Using RAID, we evaluate the out-of-domain and adversarial robustness of 8 open- and 4 closed-source detectors and find that current detectors are easily fooled by adversarial attacks, variations in sampling strategies, repetition penalties, and unseen generative models. We release our data along with a leaderboard to encourage future research. 
    more » « less
  5. Anomaly detection is one of the frequent and important subroutines deployed in large-scale data processing applications. Even being a well-studied topic, existing techniques for unsupervised anomaly detection require storing significant amounts of data, which is prohibitive from memory, latency and privacy perspectives, especially for small mobile devices which has ultra-low memory budget and limited computational power. In this paper, we propose ACE (Arrays of (locality-sensitive) Count Estimators) algorithm that can be 60x faster than most state-of-the-art unsupervised anomaly detection algorithms. In addition, ACE has appealing privacy properties. Our experiments show that ACE algorithm has significantly smaller memory footprints (∠ 4MB in our experiments) which can exploit Level 3 cache of any modern processor. At the core of the ACE algorithm, there is a novel statistical estimator which is derived from the sampling view of Locality Sensitive Hashing (LSH). This view is significantly different and efficient than the widely popular view of LSH for near-neighbor search. We show the superiority of ACE algorithm over 11 popular baselines on 3 benchmark datasets, including the KDD-Cup99 data which is the largest available public benchmark comprising of more than half a million entries with ground truth anomaly labels. 
    more » « less