Compositional tuning of complex metal oxides in Li-ion battery materials influences their performance as well as their end-of-life behavior, in particular, the tendency to release toxic metal cations in aqueous solution. We modeled ternary variants of a parent LiCoO2 delafossite structure by varying the metal identity and relative amounts. This yielded ten model formulations of Li(A4/6B1/6C1/6)O2, where the material is enriched with the A metal and doped with B and C, with Ni, Mn, Co, Fe, Al, V, and Ti as constituent metals. To assess their stability in aqueous conditions, metal release energetics were calculated using a combination of Density Functional Theory calculations and thermodynamics. Metal release in ternary oxides is dictated by subtle variations in the coordination environment of the leaving group. To identify governing chemical features across diverse compositions with varying local coordination environments, we leverage random forest regression and descriptor importance analysis. A key result is that metal–oxygen orbital hybridization, quantified using a projected density-of-states-derived descriptor, Hd/p, provides a physically grounded measure of interaction strength that governs metal release energetics. This refined perspective goes beyond conventional oxidation state considerations and offers more robust insights for materials science. Finally, we model defect surface-bound O2 dimer formation as a proxy for reactive oxygen species (ROS) generation. The results show that Ni-rich compositions more readily stabilize spin-polarized O2 dimers, corroborating experimental reports of an increased ROS-driven biological response. Our results establish a compositional and electronic basis for metal release and surface oxygen reactivity that form a rationale for complex metal oxide design principles.
more »
« less
The Reactivity of Polyethylene Microplastics in Water under Low Oxygen Conditions Using Radiation Chemistry
Polyethylene (PE) is an intensely utilized polymer, which has consequently led to it becoming a common environmental contaminant. PE and other plastic waste are known to be highly persistent in surface waters; however, chemical and physical changes do take place over time, dependent mostly on highly variable natural conditions, such as oxygen (O2) availability. Gamma radiation was used to generate reactive oxygen species, namely hydroxyl radicals, in initially aerated aqueous solutions to simulate the natural weathering of microplastics in waters where there are fluctuations and often depletions in dissolved O2. The headspace of the irradiated PE-containing solutions was probed for the formation of degradation products using solid-phase microextraction (SPME) fibers in combination with gas chromatography mass spectrometry (GCMS). The major species detected were n-dodecane, with trace levels of tridecane, 2-dodecanone, and hexadecane, which were believed to be predominately adsorbed in the PE microplastics in excess of their aqueous solubility limits. Surface characterization by Raman spectroscopy and light and dark field microscopy indicated no change in the chemical composition of the irradiated PE microplastics under low O2 to anaerobic conditions. However, morphological changes were observed, indicating radical combination reactions.
more »
« less
- Award ID(s):
- 2035499
- PAR ID:
- 10351489
- Date Published:
- Journal Name:
- Water
- Volume:
- 13
- Issue:
- 21
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 3120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microplastics in the aquatic system are among the many inevitable consequences of plastic pollution, which has cascading environmental and public health impacts. Our study aimed at analyzing surface interactions and leachate production of six microplastics under ultraviolet (UV) irradiation. Leachate production was analyzed for the dissolved organic content (DOC), UV 254 , and fluorescence through excitation emission (EEM) to determine the kinetics and mechanisms involved in the release of organic matter by UV irradiation. The results suggested there was a clear trend of organic matter being released from the surface of the six microplastics caused by UV irradiation based on DOC, UV 254 absorbance, and EEM intensity increasing with time. Polystyrene had the greatest and fastest increase in DOC concentrations, followed by the resin coated polystyrene. Experiments conducted at different temperatures indicated the endothermic nature of these leaching mechanisms. The differences in leachate formation for different polymers were attributed to their chemical makeup and their potency to interact with UV. The aged microplastic samples were analyzed by Fourier-transform infrared spectroscopy (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), to determine the surface changes with respect to leachate formation. Results indicated that all microplastics had increasing carbonyl indices when aged by UV with polystyrene being the greatest. These findings affirm that the leachate formation is an interfacial interaction and could be a significant source of organic compound influx to natural waters due to the extremely abundant occurrence of microplastics and their large surface areas.more » « less
-
Abstract Superoxide () is a reactive oxygen species (ROS) that is primarily produced by the one‐electron transfer of photooxidized chromophoric dissolved organic matter (CDOM) to O2in sunlit natural waters. Here we examine the environmental and chemical parameters (pH, ionic strength, buffer, and halides) that may influence photochemical production rates and decay pathways in natural water. Using the enzyme superoxide dismutase and H2O2measurements, we present results from an irradiated freshwater CDOM source indicating that reductive decay pathways (P/PSOD) dominate with increased pH and NaCl additions and maximal photoproduction rates () increase with carbonate compared to borate buffer. Over 2 h of irradiation, a significant decline in was seen for all samples along with a minor increase in oxidative pathways. These results imply shifts in decay pathways and production rates that seem to vary across natural waters and as a function of irradiation history.more » « less
-
Photolysis of the herbicide dicamba in aqueous solutions and on corn ( Zea mays ) epicuticular waxesnull (Ed.)Dicamba, 3,6-dichloro-2-methoxybenzoic acid, has been used in agriculture as an herbicide for over fifty years, and has seen an increase in use in the past decade due to the development of glyphosate resistant weeds and soybeans genetically modified to resist dicamba. Despite the previous use of dicamba, many questions remain regarding its environmental fate, especially the new commercial formulations used on genetically modified crops. Here, the photolysis of dicamba, including the commercial formulation Diablo®, is examined in aqueous solutions of varying water quality and on the surface of corn epicuticular waxes. Dicamba is stable to hydrolysis but degrades under UV light. The photolytic half-life for dicamba photolysis in aqueous solutions at pH 7 irradiated with Rayonet UVB lamps (280–340 nm) was t 1/2 = 43.3 min (0.72 hours), in aqueous solutions at pH 7 in a Q-Sun solar simulator ( λ > 300 nm) was t 1/2 = 13.4 hours, and on epicuticular waxes irradiated in the Q-Sun solar simulator was t 1/2 = 105 hours. Experiments with adjuvants, compounds added into the commercial formulations of dicamba, led to increases in rate constants for both aqueous and wax experiments. In addition to kinetic rate constants, photoproducts were tentatively assigned for the aqueous solution experiments. This work deepens the knowledge of the environmental fate of dicamba including the role surfactants play in chemical reactions and in providing new applications of current methods to examine the photolysis of chemicals sorbed to surfaces.more » « less
-
NA (Ed.)Zooplankton are vulnerable to microplastics in the waters due to their indiscriminate feeding habits. Zooplankton consumption of microplastics affects microplastic accumulation and transmission in the marine ecosystem. Therefore, it is essential to know the intake and transmission by different group sizes of zooplankton in natural seawater. This study documented for the first time the levels of microplastics found in three sizes of copepods along the Indonesian Throughflow (ITF) pathways. The ingestion rates were 0.028, 0.023 and 0.016 n/ind for group sizes copepod 1000-2000 µm, 500-1000 µm and 200-500 µm, respectively. There was no significant distinction in the microplastics concentrations of the three groups of copepod classes along the ITF pathway (p>0.005). Fiber microplastics were the most dominant in the body of copepods, constituting 87.22% of ingested microplastics. In terms of the chemical composition of the microplastic, a total of 7 polymers were detected in copepods in the ITF pathway. The three predominant polymer types identified were polyvinyl butyral (PVB), polyvinyl ether maleic anhydride (PVEMA) and polyester (PES) (27%, 27% and 20%, respectively). This study provides the critical parameters of the microplastic in copepods in the ITF pathway and is an essential basis for further ecological risk assessments of microplastics in biota species.more » « less
An official website of the United States government

