skip to main content


Title: Toward Automated Analysis of Fetal Phonocardiograms: Comparing Heartbeat Detection from Fetal Doppler and Digital Stethoscope Signals
Longitudinal fetal health monitoring is essential for high-risk pregnancies. Heart rate and heart rate variability are prime indicators of fetal health. In this work, we implemented two neural network architectures for heartbeat detection on a set of fetal phonocardiogram signals captured using fetal Doppler and a digital stethoscope. We test the efficacy of these networks using the raw signals and the hand-crafted energy from the signal. The results show a Convolutional Neural Network is the most efficient at identifying the S1 waveforms in a heartbeat, and its performance is improved when using the energy of the Doppler signals. We further discuss issues, such as low Signal-to-Noise Ratios (SNR), present in the training of a model based on the stethoscope signals. Finally, we show that we can improve the SNR, and subsequently the performance of the stethoscope, by matching the energy from the stethoscope to that of the Doppler signal.  more » « less
Award ID(s):
1915599
NSF-PAR ID:
10351531
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Page Range / eLocation ID:
975 to 979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Noninvasive transabdominal fetal pulse oximetry can provide clinicians critical assessment of fetal health and potentially contribute to improved management of childbirth. Conventional pulse oximetry through continuous wave (CW) light has challenges measuring the signals from deep tissue and separating the weak fetal signal from the strong maternal signal. Here, we propose a new approach for transabdominal fetal pulse oximetry through interferometric near-infrared spectroscopy (iNIRS). This approach provides pathlengths of photons traversing the tissue, which facilitates the extraction of fetal signals by rejecting the very strong maternal signal from superficial layers. We use a multimode fiber combined with a mode-field converter at the detection arm to boost the signal of iNIRS. Together, we can detect signals from deep tissue (>∼1.6 cm in sheep abdomen and in human forearm) at merely 1.1 cm distance from the source. Using a pregnant sheep model, we experimentally measured and extracted the fetal heartbeat signals originating from deep tissue. This validated a key step towards transabdominal fetal pulse oximetry through iNIRS and set a foundation for further development of this method to measure the fetal oxygen saturation.

     
    more » « less
  2. null (Ed.)
    Monitoring of fetal electrocardiogram (fECG) would provide useful information about fetal wellbeing as well as any abnormal development during pregnancy. Recent advances in flexible electronics and wearable technologies have enabled compact devices to acquire personal physiological signals in the home setting, including those of expectant mothers. However, the high noise level in the daily life renders long-entrenched challenges to extract fECG from the combined fetal/maternal ECG signal recorded in the abdominal area of the mother. Thus, an efficient fECG extraction scheme is a dire need. In this work, we intensively explored various extraction algorithms, including template subtraction (TS), independent component analysis (ICA), and extended Kalman filter (EKF) using the data from the PhysioNet 2013 Challenge. Furthermore, the modified data with Gaussian and motion noise added, mimicking a practical scenario, were utilized to examine the performance of algorithms. Finally, we combined different algorithms together, yielding promising results, with the best performance in the F1 score of 92.61% achieved by an algorithm combining ICA and TS. With the data modified by adding different types of noise, the combination of ICA–TS–ICA showed the highest F1 score of 85.4%. It should be noted that these combined approaches required higher computational complexity, including execution time and allocated memory compared with other methods. Owing to comprehensive examination through various evaluation metrics in different extraction algorithms, this study provides insights into the implementation and operation of state-of-the-art fetal and maternal monitoring systems in the era of mobile health. 
    more » « less
  3. Vital signs (e.g., heart and respiratory rate) are indicative for health status assessment. Efforts have been made to extract vital signs using radio frequency (RF) techniques (e.g., Wi-Fi, FMCW, UWB), which offer a non-touch solution for continuous and ubiquitous monitoring without users’ cooperative efforts. While RF-based vital signs monitoring is user-friendly, its robustness faces two challenges. On the one hand, the RF signal is modulated by the periodic chest wall displacement due to heartbeat and breathing in a nonlinear manner. It is inherently hard to identify the fundamental heart and respiratory rates (HR and RR) in the presence of higher order harmonics of them and intermodulation between HR and RR, especially when they have overlapping frequency bands. On the other hand, the inadvertent body movements may disturb and distort the RF signal, overwhelming the vital signals, thus inhibiting the parameter estimation of the physiological movement (i.e., heartbeat and breathing). In this paper, we propose DeepVS, a deep learning approach that addresses the aforementioned challenges from the non-linearity and inadvertent movements for robust RF-based vital signs sensing in a unified manner. DeepVS combines 1D CNN and attention models to exploit local features and temporal correlations. Moreover, it leverages a two-stream scheme to integrate features from both time and frequency domains. Additionally, DeepVS unifies the estimation of HR and RR with a multi-head structure, which only adds limited extra overhead (<1%) to the existing model, compared to doubling the overhead using two separate models for HR and RR respectively. Our experiments demonstrate that DeepVS achieves 80-percentile HR/RR errors of 7.4/4.9 beat/breaths per minute (bpm) on a challenging dataset, as compared to 11.8/7.3 bpm of a non-learning solution. Besides, an ablation study has been conducted to quantify the effectiveness of DeepVS. 
    more » « less
  4. Fetal electrocardiogram (fECG) assessment is essential throughout pregnancy to monitor the wellbeing and development of the fetus, and to possibly diagnose potential congenital heart defects. Due to the high noise incorporated in the abdominal ECG (aECG) signals, the extraction of fECG has been challenging. And it is even a lot more difficult for fECG extraction if only one channel of aECG is provided, i.e., in a compact patch device. In this paper, we propose a novel algorithm based on the Ensemble Kalman filter (EnKF) for non-invasive fECG extraction from a single-channel aECG signal. To assess the performance of the proposed algorithm, we used our own clinical data, obtained from a pilot study with 10 subjects each of 20 min recording, and data from the PhysioNet 2013 Challenge bank with labeled QRS complex annotations. The proposed methodology shows the average positive predictive value (PPV) of 97.59%, sensitivity (SE) of 96.91%, and F1-score of 97.25% from the PhysioNet 2013 Challenge bank. Our results also indicate that the proposed algorithm is reliable and effective, and it outperforms the recently proposed extended Kalman filter (EKF) based algorithm. 
    more » « less
  5. Using wireless signals to monitor human vital signs, especially heartbeat information, has been intensively studied in the past decade. This non-contact sensing modality can drive various applications from cardiac health, sleep, and emotion management. Under the circumstance of the COVID-19 pandemic, non-contact heart monitoring receives increasingly market demands. However, existing wireless heart monitoring schemes can only detect limited heart activities, such as heart rate, fiducial points, and Seismocardiography (SCG)-like information. In this paper, we present CardiacWave to enable a non-contact high-definition heart monitoring. CardiacWave can provide a full spectrum of Electrocardiogram (ECG)-like heart activities, including the details of P-wave, T-wave, and QRS complex. Specifically, CardiacWave is built upon the Cardiac-mmWave scattering effect (CaSE), which is a variable frequency response of the cardiac electromagnetic field under the mmWave interrogation. The CardiacWave design consists of a noise-resistant sensing scheme to interrogate CaSE and a cardiac activity profiling module for extracting cardiac electrical activities from the interrogation response. Our experiments show that the CardiacWave-induced ECG measures have a high positive correlation with the heart activity ground truth (i.e., measurements from a medical-grade instrument). The timing difference of P-waves, T-waves, and QRS complex is 0.67%, 0.71%, and 0.49%, respectively, and a mean cardiac event difference is within a delay of 5.3 milliseconds. These results indicate that CaridacWave offers high-fidelity and integral heart clinical characteristics. Furthermore, we evaluate the CardiacWave system with participants under various conditions, including heart and breath rates, ages, and heart habits (e.g., tobacco use). 
    more » « less