skip to main content


Title: Combinatorial Conditions for Directed Collapsing
While collapsibility of CW complexes dates back to the 1930s, collapsibility of directed Euclidean cubical complexes has not been well studied to date. The classical definition of collapsibility involves certain conditions on pairs of cells of the complex. The direction of the space can be taken into account by requiring that the past links of vertices remain homotopy equivalent after collapsing. We call this type of collapse a link-preserving directed collapse. In the undirected setting, pairs of cells are removed that create a deformation retract. In the directed setting, topological properties---in particular, properties of spaces of directed paths---are not always preserved. In this paper, we give computationally simple conditions for preserving the topology of past links. Furthermore, we give conditions for when link-preserving directed collapses preserve the contractability and connectedness of spaces of directed paths. Throughout, we provide illustrative examples.  more » « less
Award ID(s):
2046730 1664858
NSF-PAR ID:
10351557
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Gasparovic, Ellen; Robins, Vanessa; Turner, Katharine
Date Published:
Journal Name:
Association for Women in Mathematics series
Volume:
30
ISSN:
2364-5741
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the directed setting, the spaces of directed paths between fixed initial and terminal points are the defining feature for distinguishing different directed spaces. The simplest case is when the space of directed paths is homotopy equivalent to that of a single path; we call this the trivial space of directed paths. Directed spaces that are topologically trivial may have non-trivial spaces of directed paths, which means that information is lost when the direction of these topological spaces is ignored. We define a notion of directed collapsibility in the setting of a directed Euclidean cubical complex using the spaces of directed paths of the underlying directed topological space, relative to an initial or a final vertex. In addition, we give sufficient conditions for a directed Euclidean cubical complex to have a contractible or a connected space of directed paths from a fixed initial vertex. We also give sufficient conditions for the path space between two vertices in a Euclidean cubical complex to be disconnected. Our results have applications to speeding up the verification process of concurrent programming and to understanding partial executions in concurrent programs. 
    more » « less
  2. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back 
    more » « less
  3. null (Ed.)
    Urban street networks are subject to a variety of random disruptions. The impact of movement restrictions (e.g., one-way or left-turn restrictions) on the ability of a network to overcome these disruptions—that is, its resilience—has not been thoroughly studied. To address this gap, this paper investigates the resilience of one-way and two-way square grid street networks with and without left turns under light traffic conditions. Networks are studied using a simplified routing algorithm that can be examined analytically and a microsimulation that describes detailed vehicle dynamics. In the simplified method, routing choices are enumerated for all possible origin–destination (OD) combinations to identify how the removal of a link affects operations, both when knowledge of the disruption is and is not available at the vehicle’s origin. Disruptions on two-way networks that allow left turns tend to have little impact on travel distances because of the availability of multiple shortest paths between OD pairs and the flexibility in route modification. Two-way networks that restrict left turns at intersections only have a single shortest-distance path between any OD pair and thus experience larger increases in travel distance, even when the disruption is known ahead of time. One-way networks sometimes have multiple shortest-distance routes and thus travel distances increase less than two-way network without left turns when links are disrupted. These results reveal a clear tradeoff between improved efficiency and reduced resilience for networks that have movement restrictions, and can be used as a basis to study network resilience under more congested scenarios and in more realistic network structures. 
    more » « less
  4. null (Ed.)
    Abstract In this paper, we introduce and study representation homology of topological spaces, which is a natural homological extension of representation varieties of fundamental groups. We give an elementary construction of representation homology parallel to the Loday–Pirashvili construction of higher Hochschild homology; in fact, we establish a direct geometric relation between the two theories by proving that the representation homology of the suspension of a (pointed connected) space is isomorphic to its higher Hochschild homology. We also construct some natural maps and spectral sequences relating representation homology to other homology theories associated with spaces (such as Pontryagin algebras, ${{\mathbb{S}}}^1$-equivariant homology of the free loop space, and stable homology of automorphism groups of f.g. free groups). We compute representation homology explicitly (in terms of known invariants) in a number of interesting cases, including spheres, suspensions, complex projective spaces, Riemann surfaces, and some 3-dimensional manifolds, such as link complements in ${\mathbb{R}}^3$ and the lens spaces $ L(p,q) $. In the case of link complements, we identify the representation homology in terms of ordinary Hochschild homology, which gives a new algebraic invariant of links in ${\mathbb{R}}^3$. 
    more » « less
  5. We consider Byzantine consensus in a synchronous system where nodes are connected by a network modeled as a directed graph, i.e., communication links between neighboring nodes are not necessarily bi-directional. The directed graph model is motivated by wireless networks wherein asymmetric communication links can occur. In the classical point-to-point communication model, a message sent on a communication link is private between the two nodes on the link. This allows a Byzantine faulty node to equivocate, i.e., send inconsistent information to its neighbors. This paper considers the local broadcast model of communication, wherein transmission by a node is received identically by all of its outgoing neighbors, effectively depriving the faulty nodes of the ability to equivocate. Prior work has obtained sufficient and necessary conditions on undirected graphs to be able to achieve Byzantine consensus under the local broadcast model. In this paper, we obtain tight conditions on directed graphs to be able to achieve Byzantine consensus with binary inputs under the local broadcast model. The results obtained in the paper provide insights into the trade-off between directionality of communication links and the ability to achieve consensus. 
    more » « less