skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: fauci-email: a json digest of Anthony Fauci's released emails
We provide a processed JSON version of the 3234 page PDF document of Anthony Fauci's emails that were released in 2021 to provide a better understanding of the United States government response to the COVID-19 pandemic. The main JSON file contains a collection of 1289 email threads with 2761 emails among the threads, which includes 101 duplicate emails. For each email, we provide information about the sender, recipients, CC-list, subject, email body text, and email time stamp (when available). We also provide a number of derived datasets stored in individual JSON files: 5 different types of derived email networks, 1 email hypergraph, 1 temporal graph, and 3 tensors. Details for the data conversion process, the construction of the derived datasets, and subsequent analyses can all be found in an online technical report at https://arxiv.org/abs/2108.01239. Updated code for processing and analyzing the data can be found at https://github.com/nveldt/fauci-email.</p> Research additionally supported by ARO Award W911NF-19-1-0057, ARO MURI, and NSF CAREER Award IIS-2045555, as well as NSF awards CCF-1909528, IIS-2007481, and the Sloan Foundation.  more » « less
Award ID(s):
2007481 1909528
PAR ID:
10351793
Author(s) / Creator(s):
; ;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
Anthony Fauci email COVID-19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the modeling power for problems under uncertainty, robust optimization (RO) and adaptive RO (ARO) can exhibit too conservative solutions in terms of objective value degradation compared with the nominal case. One of the main reasons behind this conservatism is that, in many practical applications, uncertain constraints are directly designed as constraint-wise without taking into account couplings over multiple constraints. In this paper, we define a coupled uncertainty set as the intersection between a constraint-wise uncertainty set and a coupling set. We study the benefit of coupling in alleviating conservatism in RO and ARO. We provide theoretical tight and computable upper and lower bounds on the objective value improvement of RO and ARO problems under coupled uncertainty over constraint-wise uncertainty. In addition, we relate the power of adaptability over static solutions with the coupling of uncertainty set. Computational results demonstrate the benefit of coupling in applications. Funding: I. Wang was supported by the NSF CAREER Award [ECCS 2239771] and Wallace Memorial Honorific Fellowship from Princeton University. B. Stellato was supported by the NSF CAREER Award [ECCS 2239771]. 
    more » « less
  2. Communication tools such as email facilitate communication and collaboration between speakers of different languages, who use two primary strategies—English as a common language and machine translation (MT) tools—to help them overcome language barriers. However, each of these communication strategies creates its own challenges for cross-lingual communication. In this paper, we compare how people’s interpretations of an email sender’s social intention, and their evaluation of the email and the senders, differ when using a common language versus MT in email communication. We conducted an online experiment in which monolingual native English speakers read and rated request emails written by native English speakers, emails written by bilingual Chinese speakers in English, and emails written in Chinese then machine-translated into English. We found that participants interpreted the social intentions of the email sender less accurately for machine-translated emails than for emails written by non-native speakers in English. Participants also rated the senders and emails less positively overall for machine-translated emails compared to emails written by non-native speakers in English. Based on these findings, we suggest design possibilities that could better aid multilingual communication. 
    more » « less
  3. Phishing scam emails are emails that pretend to be something they are not in order to get the recipient of the email to undertake some action they normally would not. While technical protections against phishing reduce the number of phishing emails received, they are not perfect and phishing remains one of the largest sources of security risk in technology and communication systems. To better understand the cognitive process that end users can use to identify phishing messages, I interviewed 21 IT experts about instances where they successfully identified emails as phishing in their own inboxes. IT experts naturally follow a three-stage process for identifying phishing emails. In the first stage, the email recipient tries to make sense of the email, and understand how it relates to other things in their life. As they do this, they notice discrepancies: little things that are off'' about the email. As the recipient notices more discrepancies, they feel a need for an alternative explanation for the email. At some point, some feature of the email --- usually, the presence of a link requesting an action --- triggers them to recognize that phishing is a possible alternative explanation. At this point, they become suspicious (stage two) and investigate the email by looking for technical details that can conclusively identify the email as phishing. Once they find such information, then they move to stage three and deal with the email by deleting it or reporting it. I discuss ways this process can fail, and implications for improving training of end users about phishing. 
    more » « less
  4. In this paper, we consider a personalized assortment planning problem under inventory constraints, where each arriving customer type is defined by a primary item of interest. As long as that item is in stock, the customer adds it to the shopping cart, at which point the retailer can recommend to the customer an assortment of add-ons to go along with the primary item. This problem is motivated by the new “recommendation at checkout” systems that have been deployed at many online retailers, and it also serves as a framework that unifies many existing problems in online algorithms (e.g., personalized assortment planning, single-leg booking, and online matching with stochastic rewards). In our problem, add-on recommendation opportunities are eluded when primary items go out of stock, which poses additional challenges for the development of an online policy. We overcome these challenges by introducing the notion of an inventory protection level in expectation and derive an algorithm with a 1/4-competitive ratio guarantee under adversarial arrivals. Funding: This work was supported by the Adobe Data Science Research Award and the Alibaba Innovation Research Award. L. Xin was partly supported by the National Science Foundation (NSF) [Award CMMI-1635160], X. Chen was supported by the NSF [CAREER Award IIS-1845444]. W. Ma and D. Simchi-Levi were supported by the Accenture and MIT Alliance in Business Analytics. 
    more » « less
  5. As phishing emails pose a growing threat to individuals and organizations alike, there is an urgent need to develop more accurate detection methods. Large Language Models (LLMs) have recently garnered major attention in this line of research; however, they often require large-scale data for fine-tuning, which is impractical in real-world application scenarios. This paper proposes DRILL, a new simple and efficient mechanism, for dual-reasoning LLMs to detect phishing emails with extremely small data. DRILL distills the reasoning ability from an LLM into a target small LM model, while integrating trainable perturbations to manipulate the inputs, which in turn adaptively enhances the inference ability of the target LM. Extensive experiments are conducted on multiple real-world email datasets, and the evaluation results demonstrate that DRILL can benefit from dual LMs, which significantly reduces training parameters and data required, while maintaining state-of-the-art performance in phishing email detection with limited data. 
    more » « less