Spatially explicit, fine-grained datasets describing historical urban extents are rarely available prior to the era of operational remote sensing. However, such data are necessary to better understand long-term urbanization and land development processes and for the assessment of coupled nature–human systems (e.g., the dynamics of the wildland–urban interface). Herein, we propose a framework that jointly uses remote-sensing-derived human settlement data (i.e., the Global Human Settlement Layer, GHSL) and scanned, georeferenced historical maps to automatically generate historical urban extents for the early 20th century. By applying unsupervised color space segmentation to the historical maps, spatially constrained to the urban extents derived from the GHSL, our approach generates historical settlement extents for seamless integration with the multi-temporal GHSL. We apply our method to study areas in countries across four continents, and evaluate our approach against historical building density estimates from the Historical Settlement Data Compilation for the US (HISDAC-US), and against urban area estimates from the History Database of the Global Environment (HYDE). Our results achieve Area-under-the-Curve values >0.9 when comparing to HISDAC-US and are largely in agreement with model-based urban areas from the HYDE database, demonstrating that the integration of remote-sensing-derived observations and historical cartographic data sources opens up new, promising avenues for assessing urbanization and long-term land cover change in countries where historical maps are available.
more »
« less
Creeping disaster along the U.S. coastline: Understanding exposure to sea level rise and hurricanes through historical development
Current estimates of U.S. property at risk of coastal hazards and sea level rise (SLR) are staggering—evaluated at over a trillion U.S. dollars. Despite being enormous in the aggregate, potential losses due to SLR depend on mitigation, adaptation, and exposure and are highly uneven in their distribution across coastal cities. We provide the first analysis of how changes in exposure ( how and when ) have unfolded over more than a century of coastal urban development in the United States. We do so by leveraging new historical settlement layers from the Historical Settlement Data Compilation for the U.S. (HISDAC-US) to examine building patterns within and between the SLR zones of the conterminous United States since the early twentieth century. Our analysis reveals that SLR zones developed faster and continue to have higher structure density than non-coastal, urban, and inland areas. These patterns are particularly prominent in locations affected by hurricanes. However, density levels in historically less-developed coastal areas are now quickly converging on early settled SLR zones, many of which have reached building saturation. These “saturation effects” suggest that adaptation polices targeting existing buildings and developed areas are likely to grow in importance relative to the protection of previously undeveloped land.
more »
« less
- PAR ID:
- 10351812
- Editor(s):
- Dias, João Miguel
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 8
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0269741
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An ESRI Shapfile containing spatially generalized built-up areas for each decade from 1900 to 2010, and for 2015, for each core-based statistical area (CBSA, i.e., metropolitan and micropolitan statistical area) in the conterminous United States. These areas are derived from historical settlement layers from the Historical settlement data compilation for the U.S. (HISDAC-US, Leyk & Uhl 2018). See Burghardt et al. (2022) for details on the data processing. Additionally, there is a CSV file (HISDAC-US_patch_statistics.csv) containing the counts of built-up property records (BUPR), and -locations (BUPL), as well as total building indoor area (BUI) and built-up area (BUA) per CBSA, year, and patch, extraced from the HISDAC-US data (Uhl & Leyk 2018, Uhl et al. 2021). This CSV can be joined to the shapefile (column uid2) by concatenating the columns msaid_year_Id. Spatial coverage: all CBSAs that are covered by the HISDAC-US historical settlement layers. This dataset includes around 2,700 U.S. counties. In the remaining counties, construction year coverage in the underlying ZTRAX data (Zillow Transaction and Assessment Dataset) is low. See Uhl et al. (2021) for details. All data created by Johannes H. Uhl, University of Colorado Boulder, USA. Code available at https://github.com/johannesuhl/USRoadNetworkEvolution. References: Burghardt, K., Uhl, J., Lerman, K., & Leyk, S. (2022). Road Network Evolution in the Urban and Rural United States Since 1900. Computers, Environment and Urban Systems. Leyk, S., & Uhl, J. H. (2018). HISDAC-US, historical settlement data compilation for the conterminous United States over 200 years. Scientific data, 5(1), 1-14. DOI: https://doi.org/10.1038/sdata.2018.175 Uhl, J. H., Leyk, S., McShane, C. M., Braswell, A. E., Connor, D. S., & Balk, D. (2021). Fine-grained, spatiotemporal datasets measuring 200 years of land development in the United States. Earth system science data, 13(1), 119-153. DOI: https://doi.org/10.5194/essd-13-119-2021more » « less
-
This CSV file contains geometric and topological road network statistics for the majority of counties in the conterminous U.S. The underlying road network data is the USGS-NTD v2019. These road network data from 2019 were clipped to historical settlement extents obtained from the HISDAC-US dataset Road network statistics are multi-temporal, calculated in time slices for the years: 1810-1900, 1880-1920, 1900-1940, 1920-1960, 1940-1980, 1960-2000, 1980-2015 The historical built-up areas used to model the historical road networks are derived from historical settlement layers from the Historical settlement data compilation for the U.S. (HISDAC-US, Leyk & Uhl 2018). See Burghardt et al. (2022) for details on the modelling strategy. Spatial coverage: all U.S. counties that are covered by the HISDAC-US historical settlement layers. This datasets includes around 2,700 U.S. counties. In the remaining counties, construction year coverage in the underlying ZTRAX data (Zillow Transaction and Assessment Dataset) is low. See Uhl et al. (2021) for details. All data created by Johannes H. Uhl, University of Colorado Boulder, USA. Code available at https://github.com/johannesuhl/USRoadNetworkEvolution. References: Burghardt, K., Uhl, J., Lerman, K., & Leyk, S. (2022). Road Network Evolution in the Urban and Rural United States Since 1900. Computers, Environment and Urban Systems. Leyk, S., & Uhl, J. H. (2018). HISDAC-US, historical settlement data compilation for the conterminous United States over 200 years. Scientific data, 5(1), 1-14. DOI: https://doi.org/10.1038/sdata.2018.175 Uhl, J. H., Leyk, S., McShane, C. M., Braswell, A. E., Connor, D. S., & Balk, D. (2021). Fine-grained, spatiotemporal datasets measuring 200 years of land development in the United States. Earth system science data, 13(1), 119-153. DOI: https://doi.org/10.5194/essd-13-119-2021more » « less
-
Fine scale data collection on vulnerability metrics is necessary for just policy outcomes. Those most likely to be disproportionately affected by specific climate risks should be identified early so that the needs of vulnerable communities (especially historically marginalized communities) can be addressed and mitigated in accordance with climate justice principles. While there is a growing body of event-specific and place-based studies, systematic studies on coastal populations at risk have typically not applied equity principles and have often ignored attributes such as race and ethnic composition, age structure, urban/rural classification, and housing tenure. Additionally, assumptions about future population trends depend on understanding past spatial patterns of change, as well as demographic and socioeconomic characteristics of the populations at risk, especially considering increasing coastal hazards. Yet, with few exceptions, research on coastal vulnerability has not analyzed changes in exposure over time and has not systematically addressed implications for communities of color over time. This paper seeks to fill these gaps. In this paper, using an equity lens and spatial demographic methods with the finest-resolution data available (census blocks), we estimate the extent of exposure and population change from 1990 to 2020 in the low elevation coastal zone in the continental United States. We find that the population of the LECZ has increased during this period, primarily by the growth of the urban population which has risen from about 22 million to 31 million persons. From 2000 to 2020, the urban population consistently grew at higher rates inside the LECZ than outside of it, reversing the pattern from the decade prior. We also examine changes in the population by race and Hispanic origin, urban and rural status, and a set of more expansive vulnerability themes. Our estimates, tabulated by counties and states, reveal the concentration and characteristics of exposure and changes to it over the past 30 years. Key findings include: residents of the LECZ are much older than average; Black residents are overrepresented in renter-occupied housing units in the urban LECZ; and from 2000 to 2020, Hispanic population growth was much higher in urban LECZ areas than urban areas elsewhere. These systematic insights into the demographic attributes of the populations most at risk of sea-level rise and associated coastal hazards can be used to ensure adaptation, mitigation, and disaster-related policies are tailored to the specific needs of these communities and actors at local, regional, and national scales. It also showcases how spatial methods can be used to understand demographic change and be put in place for future estimates of population in non-traditional units (e.g., coastal zones or other environmentally-vulnerable areas).more » « less
-
The scaling relations between city attributes and population are emergent and ubiquitous aspects of urban growth. Quantifying these relations and understanding their theoretical foundation, however, is difficult due to the challenge of defining city boundaries and a lack of historical data to study city dynamics over time and space. To address this issue, we analyze scaling between city infrastructure and population across 857 metropolitan areas in the conterminous United States over an unprecedented 115 years (1900–2015) using dasymetrically refined historical population estimates, historical urban road network models, and multi-temporal settlement data to define dynamic city boundaries. We demonstrate that urban scaling exponents closely match theoretical models over a century. Despite some close quantitative agreement with theory, the empirical scaling relations unexpectedly vary across regions. Our analysis of scaling coefficients, meanwhile, reveals that contemporary cities use more developed land and kilometers of road than cities of similar population in 1900, which has serious implications for urban development and impacts on the local environment. Overall, our results provide a new way to study urban systems based on novel, geohistorical data.more » « less
An official website of the United States government

