skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analyzing urban scaling laws in the United States over 115 years
The scaling relations between city attributes and population are emergent and ubiquitous aspects of urban growth. Quantifying these relations and understanding their theoretical foundation, however, is difficult due to the challenge of defining city boundaries and a lack of historical data to study city dynamics over time and space. To address this issue, we analyze scaling between city infrastructure and population across 857 metropolitan areas in the conterminous United States over an unprecedented 115 years (1900–2015) using dasymetrically refined historical population estimates, historical urban road network models, and multi-temporal settlement data to define dynamic city boundaries. We demonstrate that urban scaling exponents closely match theoretical models over a century. Despite some close quantitative agreement with theory, the empirical scaling relations unexpectedly vary across regions. Our analysis of scaling coefficients, meanwhile, reveals that contemporary cities use more developed land and kilometers of road than cities of similar population in 1900, which has serious implications for urban development and impacts on the local environment. Overall, our results provide a new way to study urban systems based on novel, geohistorical data.  more » « less
Award ID(s):
2121976
PAR ID:
10499845
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Environment and Planning B: Urban Analytics and City Science
Volume:
51
Issue:
9
ISSN:
2399-8083
Format(s):
Medium: X Size: p. 2249-2263
Size(s):
p. 2249-2263
Sponsoring Org:
National Science Foundation
More Like this
  1. Urban scaling analysis, the study of how aggregated urban features vary with the population of an urban area, provides a promising framework for discovering commonalities across cities and uncovering dynamics shared by cities across time and space. Here, we use the urban scaling framework to study an important, but under-explored feature in this community—income inequality. We propose a new method to study the scaling of income distributions by analysing total income scaling in population percentiles. We show that income in the least wealthy decile (10%) scales close to linearly with city population, while income in the most wealthy decile scale with a significantly superlinear exponent. In contrast to the superlinear scaling of total income with city population, this decile scaling illustrates that the benefits of larger cities are increasingly unequally distributed. For the poorest income deciles, cities have no positive effect over the null expectation of a linear increase. We repeat our analysis after adjusting income by housing cost, and find similar results. We then further analyse the shapes of income distributions. First, we find that mean, variance, skewness and kurtosis of income distributions all increase with city size. Second, the Kullback–Leibler divergence between a city’s income distribution and that of the largest city decreases with city population, suggesting the overall shape of income distribution shifts with city population. As most urban scaling theories consider densifying interactions within cities as the fundamental process leading to the superlinear increase of many features, our results suggest this effect is only seen in the upper deciles of the cities. Our finding encourages future work to consider heterogeneous models of interactions to form a more coherent understanding of urban scaling. 
    more » « less
  2. Abstract Human mobility is becoming increasingly complex in urban environments. However, our fundamental understanding of urban population dynamics, particularly the pulsating fluctuations occurring across different locations and timescales, remains limited. Here, we use mobile device data from large cities and regions worldwide combined with a detrended fractal analysis to uncover a universal spatiotemporal scaling law that governs urban population fluctuations. This law reveals the scale invariance of these fluctuations, spanning from city centers to peripheries over both time and space. Moreover, we show that at any given location, fluctuations obey a time-based scaling law characterized by a spatially decaying exponent, which quantifies their relationship with urban structure. These interconnected discoveries culminate in a robust allometric equation that links population dynamics with urban densities, providing a powerful framework for predicting and managing the complexities of urban human activities. Collectively, this study paves the way for more effective urban planning, transportation strategies, and policies grounded in population dynamics, thereby fostering the development of resilient and sustainable cities. 
    more » « less
  3. Cities such as Detroit, MI in the post-industrial Rust Belt region of the United States, have been experiencing a decline in both population and economy since the 1970's. These “shrinking cities” are characterized by aging infrastructure and increasing vacant areas, potentially resulting in more green space. While in growing cities research has demonstrated an “urban heat island” effect resulting from increased temperatures with increased urbanization, little is known about how this may be different if a city shrinks due to urban decline. We hypothesize that the changes associated with shrinking cities will have a measurable impact on their local climatology that is different than in areas experiencing increased urbanization. Here we present our analysis of historical temperature and precipitation records (1900–2020) from weather stations positioned in multiple shrinking cities from within the Rust Belt region of the United States and in growing cities within and outside of this region. Our results suggest that while temperatures are increasing overall, these increases are lower in shrinking cities than those cities that are continuing to experience urban growth. Our analysis also suggests there are differences in precipitation trends between shrinking and growing cities. We also highlight recent climate data in Detroit, MI in the context of these longer-term changes in climatology to support urban planning and management decisions that may influence or be influenced by these trends. 
    more » « less
  4. Urban heat mitigation is a pressing concern for cities. Intense urban heat poses a threat to human health and urban sustainability. Tree planting is one of the most widely employed nature-based heat mitigation methods worldwide. Therefore, city policy makers require knowledge of how much temperature will be reduced by increasing urban tree canopy (UTC). Cooling efficiency (CE), which was been proposed to quantify the magnitude of temperature reduction associated with a 1% increase in UTC, has been primarily investigated at smaller scales previously. However, such small-scale results cannot be used to develop policy at the whole-city scale. This study developed a method that reveals the scaling relations of CE so as to predict its effects at the city scale. CE was found to follow the form of a power law as spatial scale increased from the small analytical units through intermediate size units up to the extent of a whole city. The power law form appeared consistently across cities with different climate backgrounds during summer daylight hours. Furthermore, the power law form was robust within cities under different summer weather conditions. The power-law scaling approach can thus be used to predict CE at the whole-city scale, providing a useful tool for managers to set UTC goals to mitigate extreme urban heat. 
    more » « less
  5. This CSV file contains geometric and topological road network statistics for the majority of counties in the conterminous U.S. The underlying road network data is the USGS-NTD v2019. These road network data from 2019 were clipped to historical settlement extents obtained from the HISDAC-US dataset  Road network statistics are multi-temporal, calculated in time slices for the years: 1810-1900, 1880-1920, 1900-1940, 1920-1960, 1940-1980, 1960-2000, 1980-2015 The historical built-up areas used to model the historical road networks are derived from historical settlement layers from the  Historical settlement data compilation for the U.S. (HISDAC-US, Leyk & Uhl 2018). See Burghardt et al. (2022) for details on the modelling strategy. Spatial coverage: all U.S. counties that are covered by the HISDAC-US historical settlement layers. This datasets includes around 2,700 U.S. counties. In the remaining counties, construction year coverage in the underlying ZTRAX data (Zillow Transaction and Assessment Dataset) is low. See Uhl et al. (2021) for details. All data created by Johannes H. Uhl, University of Colorado Boulder, USA. Code available at https://github.com/johannesuhl/USRoadNetworkEvolution. References: Burghardt, K., Uhl, J., Lerman, K.,  & Leyk, S. (2022). Road  Network Evolution in the Urban and Rural  United States Since 1900.  Computers, Environment and Urban Systems. Leyk, S., & Uhl, J. H. (2018). HISDAC-US, historical settlement  data  compilation for the conterminous United States over 200 years. Scientific data, 5(1), 1-14. DOI:  https://doi.org/10.1038/sdata.2018.175  Uhl, J. H., Leyk, S., McShane, C. M., Braswell, A. E., Connor, D.  S.,  & Balk, D. (2021). Fine-grained, spatiotemporal datasets  measuring  200 years of land development in the United States. Earth system science data, 13(1), 119-153. DOI:  https://doi.org/10.5194/essd-13-119-2021  
    more » « less