skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems
Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are changing and what can be done about it. Here, we summarize terrestrial and marine changes in the permafrost domain with an eye toward global policy. While many questions remain, we know that continued fossil fuel burning is incompatible with the continued existence of the permafrost domain as we know it. If we fail to protect permafrost ecosystems, the consequences for human rights, biosphere integrity, and global climate will be severe. The policy implications are clear: the faster we reduce human emissions and draw down atmospheric CO 2 , the more of the permafrost domain we can save. Emissions reduction targets must be strengthened and accompanied by support for local peoples to protect intact ecological communities and natural carbon sinks within the permafrost domain. Some proposed geoengineering interventions such as solar shading, surface albedo modification, and vegetation manipulations are unproven and may exacerbate environmental injustice without providing lasting protection. Conversely, astounding advances in renewable energy have reopened viable pathways to halve human greenhouse gas emissions by 2030 and effectively stop them well before 2050. We call on leaders, corporations, researchers, and citizens everywhere to acknowledge the global importance of the permafrost domain and work towards climate restoration and empowerment of Indigenous and immigrant communities in these regions.  more » « less
Award ID(s):
1931333 1916567 1636476 1846855
PAR ID:
10352219
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Frontiers in Environmental Science
Volume:
10
ISSN:
2296-665X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The stability of permafrost is of fundamental importance to socio-economic well-being and ecological services, involving broad impacts to hydrological cycling, global budgets of greenhouse gases and infrastructure safety. This study presents a biophysical permafrost zonation map that uses a rule-based geographic information system (GIS) model integrating global climate and ecological datasets to classify and map permafrost regions (totaling 19.76 × 10 6 km 2 , excluding glaciers and lakes) in the Northern Hemisphere into five types: climate-driven (CD) (19% of area), CD/ecosystem-modified (41%), CD/ecosystem protected (3%), ecosystem-driven (29%), and ecosystem-protected (8%). Overall, 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai–Tibet Plateau. This highlights the importance of reducing ecosystem disturbances (natural and human activity) to help slow permafrost degradation and lower the related risks from a warming climate. 
    more » « less
  2. Rapid Arctic environmental change affects the entire Earth system as thawing permafrost ecosystems release greenhouse gases to the atmosphere. Understanding how much permafrost carbon will be released, over what time frame, and what the relative emissions of carbon dioxide and methane will be is key for understanding the impact on global climate. In addition, the response of vegetation in a warming climate has the potential to offset at least some of the accelerating feedback to the climate from permafrost carbon. Temperature, organic carbon, and ground ice are key regulators for determining the impact of permafrost ecosystems on the global carbon cycle. Together, these encompass services of permafrost relevant to global society as well as to the people living in the region and help to determine the landscape-level response of this region to a changing climate. 
    more » « less
  3. Fire is an important climate-driven disturbance in terrestrial ecosystems, also modulated by human ignitions or fire suppression. Changes in fire emissions can feed back on the global carbon cycle, but whether the trajectories of changing fire activity will exacerbate or attenuate climate change is poorly understood. Here, we quantify fire dynamics under historical and future climate and human demography using a coupled global climate–fire–carbon cycle model that emulates 34 individual Earth system models (ESMs). Results are compared with counterfactual worlds, one with a constant preindustrial fire regime and another without fire. Although uncertainty in projected fire effects is large and depends on ESM, socioeconomic trajectory, and emissions scenario, we find that changes in human demography tend to suppress global fire activity, keeping more carbon within terrestrial ecosystems and attenuating warming. Globally, changes in fire have acted to warm climate throughout most of the 20th century. However, recent and predicted future reductions in fire activity may reverse this, enhancing land carbon uptake and corresponding to offsetting ∼5 to 10 y of global CO 2 emissions at today’s levels. This potentially reduces warming by up to 0.11 °C by 2100. We show that climate–carbon cycle feedbacks, as caused by changing fire regimes, are most effective at slowing global warming under lower emission scenarios. Our study highlights that ignitions and active and passive fire suppression can be as important in driving future fire regimes as changes in climate, although with some risk of more extreme fires regionally and with implications for other ecosystem functions in fire-dependent ecosystems. 
    more » « less
  4. null (Ed.)
    Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation-funded Long-Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long-term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi-scalar interactions in space to complex interactions over time that govern the transport of materials and the distribution and movement of organisms. The case studies presented here range widely, showing how land-use legacies interact with climate to alter the structure and function of arid ecosystems and flows of resources and organisms in Antarctic polar desert, alpine, urban, and coastal marine ecosystems. Long-term ecological research demonstrates that connectivity can, in some circumstances, sustain valuable ecosystem functions, such as the persistence of foundation species and their associated biodiversity or, it can be an agent of state change, as when it increases wind and water erosion. Increased connectivity due to warming can also lead to species range expansions or contractions and the introduction of undesirable species. Continued long-term studies are essential for addressing the complexities of connectivity. The diversity of ecosystems within the LTER network is a strong platform for these studies. 
    more » « less
  5. Abstract Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation‐funded Long‐Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long‐term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi‐scalar interactions in space to complex interactions over time that govern the transport of materials and the distribution and movement of organisms. The case studies presented here range widely, showing how land‐use legacies interact with climate to alter the structure and function of arid ecosystems and flows of resources and organisms in Antarctic polar desert, alpine, urban, and coastal marine ecosystems. Long‐term ecological research demonstrates that connectivity can, in some circumstances, sustain valuable ecosystem functions, such as the persistence of foundation species and their associated biodiversity or, it can be an agent of state change, as when it increases wind and water erosion. Increased connectivity due to warming can also lead to species range expansions or contractions and the introduction of undesirable species. Continued long‐term studies are essential for addressing the complexities of connectivity. The diversity of ecosystems within the LTER network is a strong platform for these studies. 
    more » « less