Abstract Surface freshening through precipitation can act to stably stratify the upper ocean, forming a rain layer (RL). RLs inhibit subsurface vertical mixing, isolating deeper ocean layers from the atmosphere. This process has been studied using observations and idealized simulations. The present ocean modeling study builds upon this body of work by incorporating spatially resolved and realistic atmospheric forcing. Fine‐scale observations of the upper ocean collected during the Dynamics of the Madden‐Julian Oscillation field campaign are used to verify the General Ocean Turbulence Model (GOTM). Spatiotemporal characteristics of equatorial Indian Ocean RLs are then investigated by forcing a 2D array of GOTM columns with realistic and well‐resolved output from an existing regional atmospheric simulation. RL influence on the ocean‐atmosphere system is evaluated through analysis of RL‐induced modification to surface fluxes and sea surface temperature (SST). This analysis demonstrates that RLs cool the ocean surface on time scales longer than the associated precipitation event. A second simulation with identical atmospheric forcing to that in the first, but with rainfall set to zero, is performed to investigate the role of rain temperature and salinity stratification in maintaining cold SST anomalies within RLs. Approximately one third, or 0.1°C, of the SST reduction within RLs can be attributed to rain effects, while the remainder is attributed to changes in atmospheric temperature and humidity. The prolonged RL‐induced SST anomalies enhance SST gradients that have been shown to favor the initiation of atmospheric convection. These findings encourage continued research of RL feedbacks to the atmosphere.
more »
« less
Ocean Surface Salinity Response to Atmospheric River Precipitation in the California Current System
Abstract Atmospheric rivers (ARs) result in precipitation over land and ocean. Rainfall on the ocean can generate a buoyant layer of freshwater that impacts exchanges between the surface and the mixed layer. These “fresh lenses” are important for weather and climate because they may impact the ocean stratification at all time scales. Here we use in situ ocean data, collocated with AR events, and a one-dimensional configuration of a general circulation model, to investigate the impact of AR precipitation on surface ocean salinity in the California Current System (CCS) on seasonal and event-based time scales. We find that at coastal and onshore locations the CCS freshens through the rainy season due to AR events, and years with higher AR activity are associated with a stronger freshening signal. On shorter time scales, model simulations suggest that events characteristic of CCS ARs can produce salinity changes that are detectable by ocean instruments (≥0.01 psu). Here, the surface salinity change depends linearly on rain rate and inversely on wind speed. Higher wind speeds ( U > 8 m s −1 ) induce mixing, distributing freshwater inputs to depths greater than 20 m. Lower wind speeds ( U ≤ 8 m s −1 ) allow freshwater lenses to remain at the surface. Results suggest that local precipitation is important in setting the freshwater seasonal cycle of the CCS and that the formation of freshwater lenses should be considered for identifying impacts of atmospheric variability on the upper ocean in the CCS on weather event time scales. Significance Statement Atmospheric rivers produce large amounts of rainfall. The purpose of this study is to understand how this rain impacts the surface ocean in the California Current System on seasonal and event time scales. Our results show that a greater precipitation over the rainy season leads to a larger decrease in salinity over time. On shorter time scales, these atmospheric river precipitation events commonly produce a surface salinity response that is detectable by ocean instruments. This salinity response depends on the amount of rainfall and the wind speed. In general, higher wind speeds will cause the freshwater input from rain to mix deeper, while lower wind speeds will have reduced mixing, allowing a layer of freshwater to persist at the surface.
more »
« less
- Award ID(s):
- 1928305
- PAR ID:
- 10352255
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 52
- Issue:
- 8
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 1867 to 1885
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Previous examination of rain gauge observations over a five-year period at high elevations within a river basin of the southern Appalachian Mountains showed that half of the extreme (upper 2.5%) rainfall events were associated with an atmospheric river (AR). Of these extreme events having an AR association, over 73% were linked to a societal hazard at downstream locations in eastern Tennessee and western North Carolina. Our analysis in this study was expanded to investigate AR effects in the southern Appalachian Mountains on two river basins, located 60 km apart, and examine their influence on extreme rainfall, periods of elevated precipitation and landslide events over two time periods, the ‘recent’ and ‘distant’ past. Results showed that slightly more than half of the extreme rainfall events were directly attributable to an AR in both river basins. However, there was disagreement on individual ARs influencing extreme rainfall events in each basin, seemingly a reflection of its proximity to the Blue Ridge Escarpment and the localized terrain lining the river basin boundary. Days having at least one landslide occurring in western North Carolina were found to be correlated with long periods of elevated precipitation, which often also corresponded to the influence of ARs and extreme rainfall events.more » « less
-
Abstract Rainfall alters the physical and chemical properties of the surface ocean, and its effect on ocean skin temperature and surface heat fluxes is poorly represented in many air‐sea interaction models. We present radiometric observations of ocean skin temperature, near‐surface (5 cm) temperature from a towed thermistor, and bulk atmospheric and oceanic variables, for 69 rain events observed over the course of 4 months in the Indian Ocean as part of the DYNAMO project. We test a state‐of‐the‐art prognostic model developed by Bellenger et al. (2017,https://doi.org/10.1002/2016JC012429) to predict ocean skin temperature in the presence of rain, and demonstrate a physically motivated modification to the model that improves its performance with increasing rain rate. We characterize the vertical skin‐bulk temperature gradient induced by rain and find that it levels off at high rain rates, suggestive of a transition in skin‐layer physics that has been previously hypothesized in the literature. We also quantify the small bias that will be present in turbulent sensible heat fluxes parameterized from ocean temperature measurements made at typical “bulk” depths during a rain event. Finally, a wind threshold is observed above which the surface ocean remains well‐mixed during a rain event; however, the skin temperature is observed to decrease at all wind speeds in the presence of rain.more » « less
-
Abstract Rainfall in southern California is highly variable, with some fluctuations explainable by climate patterns. Resulting runoff and heightened streamflow from rain events introduces freshwater plumes into the coastal ocean. Here we use a 105-year daily sea surface salinity record collected at Scripps Pier in La Jolla, California to show that El Niño Southern Oscillation and Pacific Decadal Oscillation both have signatures in coastal sea surface salinity. Averaging the freshest quantile of sea surface salinity over each year’s winter season provides a useful metric for connecting the coastal ocean to interannual winter rainfall variability, through the influence of freshwater plumes originating, at closest, 7.5 km north of Scripps Pier. This salinity metric has a clear relationship with dominant climate phases: negative Pacific Decadal Oscillation and La Niña conditions correspond consistently with lack of salinity anomaly/ dry winters. Fresh salinity anomalies (i.e., wet winters) occur during positive phase Pacific Decadal Oscillation and El Niño winters, although not consistently. This analysis emphasizes the strong influence that precipitation and consequent streamflow has on the coastal ocean, even in a region of overall low freshwater input, and provides an ocean-based metric for assessing decadal rainfall variability.more » « less
-
Abstract. Atmospheric rivers (ARs) transport large amounts of moisture from the mid- to high-latitudes and they are a primary driver of the most extremesnowfall events, along with surface melting, in Antarctica. In this study, we characterize the climatology and surface impacts of ARs on WestAntarctica, focusing on the Amundsen Sea Embayment and Marie Byrd Land. First, we develop a climatology of ARs in this region, using anAntarctic-specific AR detection tool combined with theModern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) atmospheric reanalyses. We find that while ARs are infrequent (occurring 3 % of the time), they cause intense precipitation in short periods of time and account for 11 % of the annual surface accumulation. They are driven by the coupling of a blocking high over the Antarctic Peninsula with a low-pressure system known as the Amundsen Sea Low. Next, we use observations from automatic weather stations on Thwaites Eastern Ice Shelf with the firn model SNOWPACK and interferometric reflectometry (IR) to examine a case study of three ARs that made landfall in rapid succession from 2 to 8 February 2020, known as an AR family event. While accumulation dominates the surface impacts of the event on Thwaites Eastern Ice Shelf (> 100 kg m−2 or millimeters water equivalent), we find small amounts of surface melt as well (< 5 kg m−2). The results presented here enable us to quantify the past impacts of ARs on West Antarctica's surface mass balance (SMB) and characterize their interannual variability and trends, enabling a better assessment of future AR-driven changes in the SMB.more » « less
An official website of the United States government

