Dynamic memory managers are a crucial component of almost every modern software system. In addition to implementing efficient allocation and reclamation, memory managers provide the essential abstraction of memory as distinct objects, which underpins the properties of memory safety and type safety. Bugs in memory managers, while not common, are extremely hard to diagnose and fix. One reason is that their implementations often involve tricky pointer calculations, raw memory manipulation, and complex memory state invariants. While these properties are often documented, they are not specified in any precise, machine-checkable form. A second reason is that memory manager bugs can break the client application in bizarre ways that do not immediately implicate the memory manager at all. A third reason is that existing tools for debugging memory errors, such as Memcheck, cannot help because they rely on correct allocation and deallocation information to work. In this paper we present Permchecker, a tool designed specifically to detect and diagnose bugs in memory managers. The key idea in Permchecker is to make the expected structure of the heap explicit by associating typestates with each piece of memory. Typestate captures elements of both type (e.g., page, block, or cell) and state (e.g., allocated, free,more »
Detecting Secure Memory Deallocation Violations with CBMC
Scrubbing sensitive data before releasing memory is a widely accepted but often ignored programming practice for developing secure software. Consequently, confidential data such as cryptographic keys, passwords, and personal data, can remain in memory indefinitely, thereby increasing the risk of exposure to hackers who can retrieve the data using memory dumps or exploit vulnerabilities such as Heartbleed and Etherleak. We propose an approach for detecting a specific memory safety bug called Improper Clearing of Heap Memory Before Release, also known as Common Weakness Enumeration 244, in C programs. The CWE-244 bug in a program allows the leakage of confidential information when a variable is not wiped before heap memory is freed. Our approach combines taint analysis and model checking to detect this weakness. We have three main phases: (1) perform a coarse flow-insensitive inter-procedural static analysis on the program to construct a set of pointer variables that could point to sensitive data; (2) instrument the program with required dynamic variable tracking, and assertion logic for memory wiping before deallocation; and (3) invoke a model checker, the C-Bounded Model Checker (CBMC) in our case, to detect assertion violation in the instrumented program. We develop a tool, \toolname, implementing our instrumentation based more »
- Award ID(s):
- 1931363
- Publication Date:
- NSF-PAR ID:
- 10352314
- Journal Name:
- CPSS '22: Proceedings of the 8th ACM on Cyber-Physical System Security Workshop
- Page Range or eLocation-ID:
- 27 to 38
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nowadays, cyberattack incidents are happening on a daily basis. As a result, the demand for a larger and more challenging workforce is increasing. To handle this demand, academic institutions offer cybersecurity courses and degree programs into their curricula; however, more efforts are needed to address the high demand of the cybersecurity workforce. This work aims to bridge the gap between workforce shortage and the number of qualified graduates to fill the positions. We approach this by introducing cybersecurity concepts at the early stage of undergraduate curricula of computer science and engineering programs. Secure programming is critical as many cybersecurity incidents happen due to software vulnerabilities. However, most UG-level programming courses pay little attention to secure programming practices. As a result, many students graduate with limited knowledge of security vulnerabilities that might plague the developed software. Our goal in this work is to introduce secure programming at introductory level programming courses so that students should be aware of cybersecurity issues and use this security mindset in advanced level courses and projects in their degree programs. To accomplish this goal, we developed intuitive and interactive modules emphasizing secure programming in C++ and Java courses to help students become secure software developers. Thesemore »
-
Analyzing multithreaded programs is notoriously hard due to the exponential number of thread interleavings. Although race detectors can help developers find and fix such bugs before the code is deployed, multithreaded code may still be buggy due to memory errors and assertion violations that are not due to race conditions. This paper presents a property directed symbolic execution of multithreaded code. Our approach, named SIFT, differs from previous work on detecting errors in multithreaded code by being property directed and by handling both memory safety and assertion checking that can be further customized by the user. SIFT can detect bugs that may or may not be due to data races, and works in an iterative way. In each step, it explores the state space using selective scheduling based on a set of interleaving points that have been inferred in the previous step. We have developed three partitioning strategies for improved effectiveness and performance. We have implemented SIFT on top of the KLEE symbolic execution engine and applied it to various real-world and academic benchmarks. SIFT could detect more vulnerabilities than a state-of-the-art memory vulnerability detector.
-
Compilers are generally not aware of the semantics of library-based parallel programming models such as MPI and OpenSHMEM, and hence are unable to detect programming errors related to their use. To alleviate this issue, we developed a custom static checker for OpenSHMEM programs based on LLVM’s Clang Static Analyzer framework (CSA). We leverage the Symbolic Execution engine of the core Static Analyzer framework and its path-sensitive analysis to check for bugs on all OpenSHMEM program paths. We have identified common programming mistakes in OpenSHMEM programs that are detectable at compile-time and provided checks for them in the analyzer. They cover: utilization of the right type of mem- ory (private vs. symmetric memory); safe/synchronized access to program data in the presence of asynchronous, one-sided communication; and double-free of memories allocated using OpenSHMEM memory allocation routines. Our experimental analysis showed that the static checker successfully detects bugs in OpenSHMEM code.
-
Intermittently-powered, energy-harvesting devices operate on energy collected from their environment and must operate intermittently as energy is available. Runtime systems for such devices often rely on checkpoints or redo-logs to save execution state between power cycles, causing arbitrary code regions to re-execute on reboot. Any non-idempotent program behavior—behavior that can change on each execution—can lead to incorrect results. This work investigates non-idempotent behavior caused by repeating I/O operations, not addressed by prior work. If such operations affect a control statement or address of a memory update, they can cause programs to take different paths or write to different memory locations on re-executions, resulting in inconsistent memory states. We provide the first characterization of input-dependent idempotence bugs and develop IBIS-S, a program analysis tool for detecting such bugs at compile time, and IBIS-D, a dynamic information flow tracker to detect bugs at runtime. These tools use taint propagation to determine the reach of input. IBIS-S searches for code patterns leading to inconsistent memory updates, while IBIS-D detects concrete memory inconsistencies. We evaluate IBIS on embedded system drivers and applications. IBIS can detect I/O-dependent idempotence bugs, giving few (IBIS-S) or no (IBIS-D) false positives and providing actionable bug reports. These bugs aremore »