skip to main content

This content will become publicly available on June 6, 2023

Title: Thermal stability of antiferroelectric-like Al:HfO 2 thin films with TiN or Pt electrodes
HfO 2 -based antiferroelectric-like thin films are increasingly being considered for commercial devices. However, even with initial promise, the temperature sensitivity of electrical properties such as loss tangent and leakage current remains unreported. 50 nm thick, 4 at. % Al-doped HfO 2 thin films were synthesized via atomic layer deposition with both top and bottom electrodes being TiN or Pt. A study of their capacitance vs temperature showed that the Pt/Al:HfO 2 /Pt had a relative dielectric permittivity of 23.30 ± 0.06 at room temperature with a temperature coefficient of capacitance (TCC) of 78 ± 86 ppm/°C, while the TiN/Al:HfO 2 /TiN had a relative dielectric permittivity of 32.28 ± 0.14 at room temperature with a TCC of 322 ± 41 ppm/°C. The capacitance of both devices varied less than 6% over 1 to 1000 kHz from −125 to 125 °C. Both capacitors maintained loss tangents under 0.03 and leakage current densities of 10 −9 –10 −7 A/cm 2 between −125 and 125 °C. The TiN/Al:HfO 2 /TiN capacitor maintained an energy storage density (ESD) of 18.17 ± 0.79 J/cm 3 at an efficiency of 51.79% ± 2.75% over the −125 to 125 °C range. The Pt/Al:HfO 2 /Pt capacitor also maintained a stable ESD of 9.83 ± 0.26 J/cm 3 with an efficiency of 62.87% ± 3.00% over the same temperature range. Such more » low losses in both capacitors along with their thermal stability make antiferroelectric-like, Al-doped HfO 2 thin films a promising material for temperature-stable microelectronics. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Applied Physics Letters
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. A phase transition material, VO 2 , with a semiconductor-to-metal transition (SMT) near 341 K (68 °C) has attracted significant research interest because of drastic changes in its electrical resistivity and optical dielectric properties. To address its application needs at specific temperatures, tunable SMT temperatures are highly desired. In this work, effective transition temperature ( T c ) tuning of VO 2 has been demonstrated via a novel Pt : VO 2 nanocomposite design, i.e. , uniform Pt nanoparticles (NPs) embedded in the VO 2 matrix. Interestingly, a bidirectional tuning has been achieved, i.e. , the transition temperature can be systematically tuned to as low as 329.16 K or as high as 360.74 K, with the average diameter of Pt NPs increasing from 1.56 to 4.26 nm. Optical properties, including transmittance ( T %) and dielectric permittivity ( ε ′) were all effectively tuned accordingly. All Pt : VO 2 nanocomposite thin films maintain reasonable SMT properties, i.e. sharp phase transition and narrow width of thermal hysteresis. The bidirectional T c tuning is attributed to two factors: the reconstruction of the band structure at the Pt : VO 2 interface and the change of the Pt : VO 2 phase boundary density. This demonstration sheds light on phasemore »transition tuning of VO 2 at both room temperature and high temperature, which provides a promising approach for VO 2 -based novel electronics and photonics operating under specific temperatures.« less
  2. Abstract

    Harnessing the exotic properties of molecular level nanostructures to produce novel sensors, metamaterials, and futuristic computer devices can be technologically transformative. In addition, connecting the molecular nanostructures to ferromagnetic electrodes bring the unprecedented opportunity of making spin property based molecular devices. We have demonstrated that magnetic tunnel junction based molecular spintronics device (MTJMSD) approach to address numerous technological hurdles that have been inhibiting this field for decades (P. Tyagi, J. Mater. Chem., Vol. 21, 4733). MTJMSD approach is based on producing a capacitor like a testbed where two metal electrodes are separated by an ultrathin insulator and subsequently bridging the molecule nanostructure across the insulator to transform a capacitor into a molecular device. Our prior work showed that MTJMSDs produced extremely intriguing phenomenon such as room temperature current suppression by six orders, spin photovoltaic effect, and evolution of new forms of magnetic metamaterials arising due to the interaction of the magnetic a molecule with two ferromagnetic thin films. However, making robust and reproducible electrical connections with exotic molecules with ferromagnetic electrodes is full of challenges and requires attention to MTJMSD structural stability. This paper focuses on MTJMSD stability by describing the overall fabrication protocol and the associated potential threatmore »to reliability. MTJMSD is based on microfabrication methods such as (a) photolithography for patterning the ferromagnetic electrodes, (b) sputtering of metallic thin films and insulator, and (c) at the end electrochemical process for bridging the molecules between two ferromagnetic films separated by ∼ 2nm insulating gap. For the successful MTJMSD fabrication, the selection of ferromagnetic metal electrodes and thickness was found to be a deterministic factor in designing the photolithography, thin film deposition strategy, and molecular bridging process. We mainly used isotropic NiFe soft magnetic material and anisotropic Cobalt (Co) with significant magnetic hardness. We found Co was susceptible to chemical etching when directly exposed to photoresist developer and aged molecular solution. However, NiFe was very stable against the chemicals we used in the MTJMSD fabrication. As compared to NiFe, the Co films with > 10nm thickness were susceptible to mechanical stress-induced nanoscale deformities. However, cobalt was essential to produce (a) low leakage current before transforming the capacitor from the magnetic tunnel junction into molecular devices and (b) tailoring the magnetic properties of the ferromagnetic electrodes. This paper describes our overall MTJMSD fabrication scheme and process optimization to overcome various challenges to produce stable and reliable MTJMSDs. We also discuss the role of mechanical stresses arising during the sputtering of the ultrathin insulator and how to overcome that challenge by optimizing the insulator growth process. This paper will benefit researchers striving to make nanoscale spintronics devices for solving grand challenges in developing advanced sensors, magnetic metamaterials, and computer devices.

    « less
  3. Abstract The manipulation of antiferromagnetic order in magnetoelectric Cr 2 O 3 using electric field has been of great interest due to its potential in low-power electronics. The substantial leakage and low dielectric breakdown observed in twinned Cr 2 O 3 thin films, however, hinders its development in energy efficient spintronics. To compensate, large film thicknesses (250 nm or greater) have been employed at the expense of device scalability. Recently, epitaxial V 2 O 3 thin film electrodes have been used to eliminate twin boundaries and significantly reduce the leakage of 300 nm thick single crystal films. Here we report the electrical endurance and magnetic properties of thin (less than 100 nm) single crystal Cr 2 O 3 films on epitaxial V 2 O 3 buffered Al 2 O 3 (0001) single crystal substrates. The growth of Cr 2 O 3 on isostructural V 2 O 3 thin film electrodes helps eliminate the existence of twin domains in Cr 2 O 3 films, therefore significantly reducing leakage current and increasing dielectric breakdown. 60 nm thick Cr 2 O 3 films show bulk-like resistivity (~ 10 12 Ω cm) with a breakdown voltage in the range of 150–300 MV/m. Exchange bias measurements of 30 nm thick Cr 2more »O 3 display a blocking temperature of ~ 285 K while room temperature optical second harmonic generation measurements possess the symmetry consistent with bulk magnetic order.« less
  4. Highly oriented Pb(Zr0.53Ti0.47)0.90Sc0.10O3 (PZTS) thin films were deposited on La0.67Sr0.33MnO3 (LSMO) buffer layer coated on MgO (100) substrates by following two subsequent laser ablation processes in oxygen atmosphere employing pulse laser deposition technique. The PZTS films were found to grow in tetragonal phase with orientation along (100) plane as inferred from x-ray diffractometry analysis. The structural sensitive symmetric E (LO2) Raman band softened at elevated temperature along with its intensity continuously decreased until it disappeared in the cubic phase above 350 K. The existence of broad Raman bands at high temperature (>350 K) is attributed to the symmetry forbidden Raman scattering in relaxor cubic phase due to symmetry breaking in nano length scale. The temperature dependent dielectric measurements were performed on metal-ferroelectric-metal capacitors in the frequencies range of 102–106 Hz was observed to be diffused over a wide range of temperature 300–650 K and exhibits high dielectric constant ~5700 at room temperature. An excellent high energy storage density (Ure) ~54 J/cm3 with efficiency ~70% was estimated at applied voltage 1.82 MV/cm. High DC breakdown strength, larger dielectric constant and high restored energy density values of our PZTS thin films indicate its usage in high energy storage applications.
  5. Antiferroelectric (AFE) materials owing to their double-loop-shaped electric-field ( E ) dependent polarization ( P ) are considered quite promising for energy-storage capacitors. Among the large family of AFE materials, the AgNbO 3 composition is attractive not only because it is environmentally friendly, but also because it has high recoverable energy storage density ( W rec ). However, the reported values of W rec < 4 J cm −3 in Ag(Nb 0.85 Ta 0.15 )O 3 multilayer capacitors are lower than that of the corresponding monolithic ceramic. This is attributed to high leakage current density ( J ) and inferior breakdown strength (BDS) in multilayer structures. Here we demonstrate that MnO 2 doping not only effectively reduces the J value and results in slim P – E loops, but also enhances the breakdown strength (BDS). Multilayer capacitors with composition Ag(Nb 0.85 Ta 0.15 )O 3 + 0.25 wt% MnO 2 (ANT + Mn) demonstrated an excellent W rec = 7.9 J cm −3 and efficiency η = 71%. Extensive investigations were conducted on ANT + Mn multilayer capacitors to demonstrate the role of strain engineering in enhancing the maximum polarization ( P max ) and Δ P values. Results revealmore »the effect of built-in stress in the active layers of multilayer capacitors on the magnitude of P max , remanent polarization ( P r ) and W rec , and provide guidance towards the development of high energy storage density in multilayer capacitors.« less