skip to main content


Title: PrimaryAI: Co-Designing Immersive Problem-Based Learning for Upper Elementary Student Learning of AI Concepts and Practices
There is growing awareness of the central role that artificial intelligence (AI) plays now and in children's futures. This has led to increasing interest in engaging K-12 students in AI education to promote their understanding of AI concepts and practices. Leveraging principles from problem-based pedagogies and game-based learning, our approach integrates AI education into a set of unplugged activities and a game-based learning environment. In this work, we describe outcomes from our efforts to co design problem-based AI curriculum with elementary school teachers.  more » « less
Award ID(s):
1934153 1934128
NSF-PAR ID:
10352386
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
27th ACM Conference on Innovation and Technology in Computer Science Education
Volume:
2
Page Range / eLocation ID:
628 to 628
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The growing ubiquity of artificial intelligence (AI) is reshaping much of daily life. This in turn is raising awareness of the need to introduce AI education throughout the K-12 curriculum so that students can better understand and utilize AI. A particularly promising approach for engaging young learners in AI education is game-based learning. In this work, we present our efforts to embed a unit on AI planning within an immersive game-based learning environment for upper elementary students (ages 8 to 11) that utilizes a scaffolding progression based on the Use-Modify-Create framework. Further, we present how the scaffolding progression is being refined based on findings from piloting the game with students. 
    more » « less
  2. This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks. 
    more » « less
  3. With the growing prevalence of AI, the need for K-12 AI education is becoming more crucial, which is prompting active research in developing engaging and age-appropriate AI learning activities. Efforts are underway, such as those by the AI4K12 initiative, to establish guidelines for organizing K- 12 AI education; however, effective instructional resources are needed by educators. In this paper, we describe our work to design, develop, and implement an unplugged activity centered on facial recognition technology for middle school students. Facial recognition is integrated into a wide range of applications throughout daily life, which makes it a familiar and engaging tool for students and an effective medium for conveying AI concepts. Our unplugged activity, “Guess Whose Face,” is designed as a board game that focuses on Representation and Reasoning from AI4K12’s 5 Big Ideas in AI. The game is crafted to enable students to develop AI competencies naturally through physical interaction. In the game, one student uses tracing paper to extract facial features from a familiar face shown on a card, such as a cartoon character or celebrity, and then other students try to guess the identity of the hidden face. We discuss details of the game, its iterative refinement, and initial findings from piloting the activity during a summer camp for rural middle school students.

     
    more » « less
  4. Recent years have seen the rapid adoption of artificial intelligence (AI) in every facet of society. The ubiquity of AI has led to an increasing demand to integrate AI learning experiences into K-12 education. Early learning experiences incorporating AI concepts and practices are critical for students to better understand, evaluate, and utilize AI technologies. AI planning is an important class of AI technologies in which an AI-driven agent utilizes the structure of a problem to construct plans of actions to perform a task. Although a growing number of efforts have explored promoting AI education for K-12 learners, limited work has investigated effective and engaging approaches for delivering AI learning experiences to elementary students. In this paper, we propose a visual interface to enable upper elementary students (grades 3-5, ages 8-11) to formulate AI planning tasks within a game-based learning environment. We present our approach to designing the visual interface as well as how the AI planning tasks are embedded within narrative-centered gameplay structured around a Use-Modify-Create scaffolding progression. Further, we present results from a qualitative study of upper elementary students using the visual interface. We discuss how the Use-Modify-Create approach supported student learning as well as discuss the misconceptions and usability issues students encountered while using the visual interface to formulate AI planning tasks. 
    more » « less
  5. Recent years have seen growing recognition of the importance of enabling K-12 students to learn computer science. Meanwhile, artificial intelligence, a field of computer science, has with the potential to profoundly reshape society. This has generated increasing demand for fostering an AI-literate populace. However, there is little work exploring how to introduce K-12 students to AI and how to support K-12 teachers in integrating AI into their classrooms. In this work, we explore how to introduce AI learning experiences into upper elementary classrooms (student ages 8 to 11). With a focus on integrating AI and life science, we present initial work on a collaborative game-based learning environment that features rich problem-based learning scenarios that enable students to gain experience with AI applied toward solving real-world life-science problems. 
    more » « less