skip to main content


This content will become publicly available on June 29, 2024

Title: Fostering Upper Elementary AI Education: Iteratively Refining a Use-Modify-Create Scaffolding Progression for AI Planning
The growing ubiquity of artificial intelligence (AI) is reshaping much of daily life. This in turn is raising awareness of the need to introduce AI education throughout the K-12 curriculum so that students can better understand and utilize AI. A particularly promising approach for engaging young learners in AI education is game-based learning. In this work, we present our efforts to embed a unit on AI planning within an immersive game-based learning environment for upper elementary students (ages 8 to 11) that utilizes a scaffolding progression based on the Use-Modify-Create framework. Further, we present how the scaffolding progression is being refined based on findings from piloting the game with students.  more » « less
Award ID(s):
1934153
NSF-PAR ID:
10444799
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Conference on Innovation and Technology in Computer Science Education
Page Range / eLocation ID:
647 to 647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent years have seen the rapid adoption of artificial intelligence (AI) in every facet of society. The ubiquity of AI has led to an increasing demand to integrate AI learning experiences into K-12 education. Early learning experiences incorporating AI concepts and practices are critical for students to better understand, evaluate, and utilize AI technologies. AI planning is an important class of AI technologies in which an AI-driven agent utilizes the structure of a problem to construct plans of actions to perform a task. Although a growing number of efforts have explored promoting AI education for K-12 learners, limited work has investigated effective and engaging approaches for delivering AI learning experiences to elementary students. In this paper, we propose a visual interface to enable upper elementary students (grades 3-5, ages 8-11) to formulate AI planning tasks within a game-based learning environment. We present our approach to designing the visual interface as well as how the AI planning tasks are embedded within narrative-centered gameplay structured around a Use-Modify-Create scaffolding progression. Further, we present results from a qualitative study of upper elementary students using the visual interface. We discuss how the Use-Modify-Create approach supported student learning as well as discuss the misconceptions and usability issues students encountered while using the visual interface to formulate AI planning tasks. 
    more » « less
  2. Although the prevention of AI vulnerabilities is critical to preserve the safety and privacy of users and businesses, educational tools for robust AI are still underdeveloped worldwide. We present the design, implementation, and assessment of Maestro. Maestro is an effective open-source game-based platform that contributes to the advancement of robust AI education. Maestro provides goal-based scenarios where college students are exposed to challenging life-inspired assignments in a competitive programming environment. We assessed Maestro's influence on students' engagement, motivation, and learning success in robust AI. This work also provides insights into the design features of online learning tools that promote active learning opportunities in the robust AI domain. We analyzed the reflection responses (measured with Likert scales) of 147 undergraduate students using Maestro in two quarterly college courses in AI. According to the results, students who felt the acquisition of new skills in robust AI tended to appreciate highly Maestro and scored highly on material consolidation, curiosity, and maestry in robust AI. Moreover, the leaderboard, our key gamification element in Maestro, has effectively contributed to students' engagement and learning. Results also indicate that Maestro can be effectively adapted to any course length and depth without losing its educational quality.

     
    more » « less
  3. Wang, Ning ; Lester, James C. (Ed.)
    This article provides an in-depth look at how K-12 students should be introduced to Machine Learning and the knowledge and skills they will develop as a result. We begin with an overview of the AI4K12 Initiative, which is developing national guidelines for teaching AI in K-12, and briefly discuss each of the “Five Big Ideas in AI” that serve as the organizing framework for the guidelines. We then discuss the general format and structure of the guidelines and grade band progression charts and provide a theoretical framework that highlights the developmental appropriateness of the knowledge and skills we want to impart to students and the learning experiences we expect them to engage in. Development of the guidelines is informed by best practices from Learning Sciences and CS Education research, and by the need for alignment with CSTA’s K-12 Computer Science Standards, Common Core standards, and Next Generation Science Standards (NGSS). The remainder of the article provides an in-depth exploration of the AI4K12 Big Idea 3 (Learning) grade band progression chart to unpack the concepts we expect students to master at each grade band. We present examples to illustrate the progressions from two perspectives: horizontal (across grade bands) and vertical (across concepts for a given grade band). Finally, we discuss how these guidelines can be used to create learning experiences that make connections across the Five Big Ideas, and free online tools that facilitate these experiences. 
    more » « less
  4. Wang, Ning ; Lester, James (Ed.)
    This article provides an in-depth look at how K-12 students should be introduced to Machine Learning and the knowledge and skills they will develop as a result. We begin with an overview of the AI4K12 Initiative, which is developing national guidelines for teaching AI in K-12, and briefly discuss each of the “Five Big Ideas in AI” that serve as the organizing framework for the guidelines. We then discuss the general format and structure of the guidelines and grade band progression charts and provide a theoretical framework that highlights the developmental appropriateness of the knowledge and skills we want to impart to students and the learning experiences we expect them to engage in. Development of the guidelines is informed by best practices from Learning Sciences and CS Education research, and by the need for alignment with CSTA’s K-12 Computer Science Standards, Common Core standards, and Next Generation Science Standards (NGSS). The remainder of the article provides an in-depth exploration of the AI4K12 Big Idea 3 (Learning) grade band progression chart to unpack the concepts we expect students to master at each grade band. We present examples to illustrate the progressions from two perspectives: horizontal (across grade bands) and vertical (across concepts for a given grade band). Finally, we discuss how these guidelines can be used to create learning experiences that make connections across the Five Big Ideas, and free online tools that facilitate these experiences. 
    more » « less
  5. There is growing awareness of the central role that artificial intelligence (AI) plays now and in children's futures. This has led to increasing interest in engaging K-12 students in AI education to promote their understanding of AI concepts and practices. Leveraging principles from problem-based pedagogies and game-based learning, our approach integrates AI education into a set of unplugged activities and a game-based learning environment. In this work, we describe outcomes from our efforts to co design problem-based AI curriculum with elementary school teachers. 
    more » « less