skip to main content

Search for: All records

Award ID contains: 1934153

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent years have seen growing recognition of the importance of enabling K-12 students to learn computer science. Meanwhile, artificial intelligence, a field of computer science, has with the potential to profoundly reshape society. This has generated increasing demand for fostering an AI-literate populace. However, there is little work exploring how to introduce K-12 students to AI and how to support K-12 teachers in integrating AI into their classrooms. In this work, we explore how to introduce AI learning experiences into upper elementary classrooms (student ages 8 to 11). With a focus on integrating AI and life science, we present initialmore »work on a collaborative game-based learning environment that features rich problem-based learning scenarios that enable students to gain experience with AI applied toward solving real-world life-science problems.« less
  2. Narrative and collaboration are two core features of rich interactive learning. Narrative-centered learning environments offer significant potential for supporting student learning. By contextualizing learning within interactive narratives, these environments leverage students’ innate facilities for developing understandings through stories. Computer-supported collaborative learning environments offer students rich, collaborative learning experiences in which small groups of students engage in constructing artifacts, addressing disciplinary challenges, and solving problems. Narrative and collaboration have distinct affordances for learning, but combining them poses significant challenges. In this paper, we present initial work on solving this problem by introducing collaborative narrative-centered learning environments. These environments will enable smallmore »groups of students to collaboratively solve problems in rich multi-participant storyworlds. We propose a novel framework for designing and developing these environments, which we are using to create a collaborative narrative-centered learning environment for middle school ecosystems education. In the learning environment, students work on problem-solving scenarios centered on how to support optimal fish health in aquatic environments. Results from pilot testing the learning environment with 45 students suggest it supports the creation of engaging and effective collaborative narrative-centered learning experiences.« less
  3. Block-based programming languages reduce the need to learn low-level programming syntax while enabling novice learners to focus on computational thinking skills. Game-based learning environments have been shown to create effective and engaging learning experiences for students in a broad range of educational domains. The fusion of block-based programming with game-based learning offers significant potential to motivate learners to develop computational thinking skills. A key challenge educational game developers face in creating rich, interactive learning experiences that integrate computational thinking activities is the lack of an embeddable block-based programming toolkit. Current block-based programming languages, such as Blockly and Scratch, cannot bemore »easily embedded into industry-standard 3D game engines. This paper presents IntelliBlox, a Blockly-inspired toolkit for the Unity cross-platform game engine that enables learners to create block-based programs within immersive game-based learning environments. Our experience using IntelliBlox suggests that it is an effective toolkit for integrating block-based programming challenges into game-based learning environments.« less