Abstract Infrared-faint white dwarfs are cool white dwarfs exhibiting significant infrared flux deficits, most often attributed to collision-induced absorption (CIA) from H2–He in mixed hydrogen–helium atmospheres. We present James Webb Space Telescope (JWST) near- and mid-infrared spectra of three such objects using Near-Infrared Spectrograph (0.6–5.3μm) and Mid-Infrared Instrument (5–14μm): LHS 3250, WD J1922+0233, and LHS 1126. Surprisingly, for LHS 3250, we detect no H2–He CIA absorption at 2.4μm, instead observing an unexpected small flux bump at this wavelength. WD J1922+0233 exhibits the anticipated strong absorption feature centered at 2.4μm, but with an unexpected narrow emission-like feature inside this absorption band. LHS 1126 shows no CIA features and follows aλ−2power law in the mid-infrared. LHS 1126's lack of CIA features suggests a very low hydrogen abundance, with its infrared flux depletion likely caused by He–He–He CIA. For LHS 3250 and WD J1922+0233, the absence of a 1.2μm CIA feature in both stars argues against ultracool temperatures, supporting recent suggestions that infrared-faint (IR-faint) white dwarfs are warmer and more massive than previously thought. This conclusion is further solidified by Keck near-infrared spectroscopy of seven additional objects. We explore possible explanations for the unexpected emission-like features in both stars, and temperature inversions above the photosphere emerge as a promising hypothesis. Such inversions may be common among the IR-faint population, and since they significantly affect the infrared spectral energy distribution, this would impact their photometric fits. Further JWST observations are needed to confirm the prevalence of this phenomenon and guide the development of improved atmospheric models. 
                        more » 
                        « less   
                    
                            
                            Keck NIRES Spectral Standards for L, T, and Y Dwarfs
                        
                    
    
            Abstract We present medium-resolution ( λ /Δ λ  = 2700), near-infrared spectral standards for field L0–L2, L4, and L7–Y0 dwarfs obtained with the Near-Infrared Echellette Spectrometer on the Keck II 10 m telescope. These standards allow for detailed spectral comparative analysis of cold brown dwarfs discovered through ongoing ground-based projects such as Backyard Worlds: Planet 9, and forthcoming space-based spectral surveys such as the James Webb Space Telescope, SPHEREx, Euclid, and the Nancy Grace Roman Space Telescope. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10352424
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 6
- Issue:
- 7
- ISSN:
- 2515-5172
- Page Range / eLocation ID:
- 151
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We verified for photometric stability a set of DA white dwarfs with Hubble Space Telescope magnitudes from the near-ultraviolet to the near-infrared and ground-based spectroscopy by using time-spaced observations from the Las Cumbres Observatory network of telescopes. The initial list of 38 stars was whittled to 32 final ones, which comprise a high-quality set of spectrophotometric standards. These stars are homogeneously distributed around the sky and are all fainter thanr∼ 16.5 mag. Their distribution is such that at least two of them would be available to be observed from any observatory on the ground at any time at airmass less than 2. Light curves and different variability indices from the Las Cumbres Observatory data were used to determine the stability of the candidate standards. When available, Pan-STARRS1, Zwicky Transient Facility, and TESS data were also used to confirm the star classification. Our analysis showed that four DA white dwarfs may exhibit evidence of photometric variability, while a fifth is cooler than our established lower temperature limit, and a sixth star might be a binary. In some instances, due to the presence of faint nearby red sources, care should be used when observing a few of the spectrophotometric standards with ground-based telescopes. Light curves and finding charts for all the stars are provided.more » « less
- 
            Abstract Hot DA white dwarfs (DAWDs) have fully radiative pure hydrogen atmospheres that are the least complicated to model. Pulsationally stable, they are fully characterized by their effective temperatureTeffand surface gravity , which can be deduced from their optical spectra and used in model atmospheres to predict their spectral energy distributions (SEDs). Based on this, three bright DAWDs have defined the spectrophotometric flux scale of the CALSPEC system of the Hubble Space Telescope (HST). In this paper we add 32 new fainter (16.5 <V< 19.5) DAWDs spread over the whole sky and within the dynamic range of large telescopes. Using ground-based spectra and panchromatic photometry with HST/WFC3, a new hierarchical analysis process demonstrates consistency between model and observed fluxes above the terrestrial atmosphere to <0.004 mag rms from 2700 to 7750 Å and to 0.008 mag rms at 1.6μm for the total set of 35 DAWDs. These DAWDs are thus established as spectrophotometric standards with unprecedented accuracy from the near-ultraviolet to the near-infrared, suitable for both ground- and space-based observatories. They are embedded in existing surveys like the Sloan Digital Sky Survey, Pan-STARRS, and Gaia, and will be naturally included in the Large Synoptic Survey Telescope survey by the Rubin Observatory. With additional data and analysis to extend the validity of their SEDs further into the infrared, these spectrophotometric standard stars could be used for JWST, as well as for the Roman and Euclid observatories.more » « less
- 
            Abstract Most brown dwarfs show some level of photometric or spectral variability. However, finding the most variable dwarfs more suited for a thorough variability monitoring campaign remained a challenge until a few years ago with the design of spectral indices to find the most likely L and T dwarfs using their near-infrared (NIR) single-epoch spectrum. In this work, we designed and tested NIR spectral indices to preselect the most likely variable L4–L8 dwarfs, complementing the indices presented by Ashraf et al. and Oliveros-Gomez et al. We used time-resolved NIR Hubble Space Telescope Wide Field Camera 3 spectra of an L6.0 dwarf, LP 261–75b, to design our novel spectral indices. We tested these spectral indices on 75 L4.0–L8.0 NIR SpeX/IRTF spectra, providing 27 new variable candidates. Our indices have a recovery rate of ∼80% and a false negative rate of ∼25%. All the known nonvariable brown dwarfs were found to be nonvariable by our indices. We estimated the variability fraction of our sample to be %, which agrees with the variability fractions provided by Buenzli et al., Radigan et al., and Metchev et al. for L4–L8 dwarfs. These spectral indices may support the future selection of the most likely variable directly imaged exoplanets for studies with the James Webb Space Telescope and as well as the 30 m telescopes.more » « less
- 
            Abstract We report direct observational evidence for a latitudinal dependence of dust cloud opacity in ultracool dwarfs, indicating that equatorial latitudes are cloudier than polar latitudes. These results are based on a strong positive correlation between the viewing geometry and the mid-infrared silicate absorption strength in mid-L dwarfs using mid-infrared spectra from the Spitzer Space Telescope and spin axis inclination measurements from available information in the literature. We confirmed that the infrared color anomalies of L dwarfs positively correlate with dust cloud opacity and viewing geometry, where redder objects are inclined equator-on and exhibit more opaque dust clouds, while dwarfs viewed at higher latitudes and with more transparent clouds are bluer. These results show the relevance of viewing geometry to explain the appearance of brown dwarfs and provide insight into the spectral diversity observed in substellar and planetary atmospheres. We also find a hint that dust clouds at similar latitudes may have higher opacity in low-surface gravity dwarfs than in higher-gravity objects.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    