skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Data Envelopment Analysis-based Approach for Managing Performance of Public Service Systems During a Disaster
In addition to their normal task of supporting community participation, engagement, and improved information access, information technology-based public service systems are also essential for maintaining critical services and providing effective communication with citizens before, during, and after emergencies. This study focuses on the impacts of disaster events on the operational performance of such service systems and discusses opportunities for managing service efficiency by rearranging and reallocating resources during emergencies. To the best of our knowledge, this is the first attempt to provide a practical method for improving the relative efficiency of public service systems in such a context. We suggest a Data Envelopment Analysis (DEA) approach for quantifying the relative efficiencies associated with service requests from an input-output-based standpoint, and discuss the Orange County (Florida) 311 non-emergency service system, in the context of the COVID-19 pandemic, as an example of how such operational efficiency can be managed during a disruption.  more » « less
Award ID(s):
1952792
PAR ID:
10352513
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 19th ISCRAM Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Public education programs improve public safety by teaching citizens how to mitigate risks and respond to emergencies. To improve these efforts, studies in the fields of risk communication and emergency management have examined the design and communication of public education information. However, few studies examine the diversity of information officials communicate to the public when state and national-level public education programs are decentralized and administered by local government agencies. This study reports findings from a content analysis of text-to-911 information published on the websites of local 911 service entities across the state of Texas. Overall, these websites communicate sparse, uneven, and sometimes inconsistent information to citizens across the state regarding the availability of text-to-911 service, when and for whom texting 911 is appropriate, and instructions and warnings for texting 911 during an emergency. These findings suggest the need for public education resources that help local governments communicate with local audiences and coordinate communications across jurisdictions working to accomplish state and national public-safety objectives. 
    more » « less
  2. Penkert, B; Hellingrath, B; Rode, M; Widera, A; Middelhoff, M; Boersma, K; Kalthoner, M (Ed.)
    This paper introduces a machine learning tool for service systems, focusing on accurate classification of service requests and swift anomaly detection, particularly crucial during emergencies. Employing a Support Vector Machine model, this tool automatically classifies service calls into predefined categories with high accuracy, while effectively detecting irregular requests that require specific attention from operators. This approach streamlines resource management by reducing the manuaI categorization workload and enables early detection of emerging service needs. Examining Orange County, Florida 311 System data, with a specific focus on the COVID-19 period, we illustrate the tool's success in automatic request categorization and anomaly detection. Overall, this tool presents an effective automation approach to help with efficient resource management of service systems and proactive assessment of public service needs, promising to revolutionize service request management during crises. Future work will explore additional classification models for enhanced accuracy and integrate automated alerts for proactive disaster management. 
    more » « less
  3. In the field of autonomous transportation systems, the integration of Unmanned Aerial Vehicles (UAVs) in emergency response scenarios is important for enhancing the operational efficiency and the victims’ positioning. This article presents a novel Positioning, Navigation, and Timing (PNT) framework, namedHEROES, which leverages the UAV and integrated sensing and communication technologies to address the challenges in post-disaster environments. Our approach focuses on a comprehensive post-disaster scenario involving multiple victims, first responders, UAVs, and an emergency control center. HEROES enables UAVs to function as anchor nodes and facilitate the precise positioning of the victims while simultaneously collecting critical data from the disaster area. We further introduce a reinforcement learning model based on the Optimistic Q-learning with Upper Confidence Bound algorithm, enabling the victims and first responders to autonomously select the most advantageous UAV connections based on their channel gain, shadowing probability, and positional characteristics. Furthermore, HEROES is based on a satisfaction game-theoretic model to enhance the sensing, communication, and positioning functionalities. Our analysis reveals the existence of various satisfaction equilibria, including minimum efficient satisfaction equilibrium, ensuring that the UAVs meet their quality of service constraints at minimal operational costs. Extensive experimental results validate the scalability and performance of HEROES, demonstrating significant improvements over existing state-of-the-art methods in delivering PNT services during humanitarian emergencies. 
    more » « less
  4. Public emergencies pose catastrophic casualties and financial losses in densely populated areas, rendering communities such as cities, towns, and universities particularly susceptible due to their intricate environments and high pedestrian traffic. While simulation analysis offers a flexible and cost-effective approach to evaluating evacuation procedures, conventional evacuation models are often limited to specific scenarios and communities, overlooking the diverse range of emergencies and evacuee behaviors. Thus, there is an urgent need for an evacuation model capable of capturing complex structures of communities and modeling evacuee responses to various emergencies. This paper presents a novel approach to simulating responsive evacuation behaviors for multiple emergency situations in public communities through spatial network modeling and multi-agent modeling. Leveraging a community network framework adaptable to different community layouts based on map data, the proposed model employs a multi-agent approach to characterize responsive and decentralized evacuation decision-making. Experimental results show the model’s efficacy in representing pedestrian flow and pedestrians’ reactive behavior across various campuses based on real-world map data. Additionally, the case study highlights the potential of the proposed model to simulate pedestrian dynamics for a variety of heterogeneous emergencies. The proposed community evacuation model holds strong promise for evaluating evacuation policies and providing insights into resilient plans during public emergencies, thereby enhancing community safety. 
    more » « less
  5. Serverless computing services are offered by major cloud service providers such as Google Cloud Platform, Amazon Web Services, and Microsoft Azure. The primary purpose of the services is to offer efficiency and scalability in modern software development and IT operations while reducing overall costs and operational complexity. However, prospective customers often question which serverless service will best meet their organizational and business needs. This study analyzed the features, usability, and performance of three serverless cloud computing platforms: Google Cloud’s Cloud Run, Amazon Web Service’s App Runner, and Microsoft Azure’s Container Apps. The analysis was conducted with a containerized mobile application designed to track real-time bus locations for San Antonio public buses on specific routes and provide estimated arrival times for selected bus stops. The study evaluated various system-related features, including service configuration, pricing, and memory and CPU capacity, along with performance metrics such as container latency, distance matrix API response time, and CPU utilization for each service. The results of the analysis revealed that Google’s Cloud Run demonstrated better performance and usability than AWS’s App Runner and Microsoft Azure’s Container Apps. Cloud Run exhibited lower latency and faster response time for distance matrix queries. These findings provide valuable insights for selecting an appropriate serverless cloud service for similar containerized web applications. 
    more » « less