skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 28, 2025

Title: Multi-agent Modeling of Human Traffic Dynamics for Rapid Response to Public Emergency in Spatial Networks
Public emergencies pose catastrophic casualties and financial losses in densely populated areas, rendering communities such as cities, towns, and universities particularly susceptible due to their intricate environments and high pedestrian traffic. While simulation analysis offers a flexible and cost-effective approach to evaluating evacuation procedures, conventional evacuation models are often limited to specific scenarios and communities, overlooking the diverse range of emergencies and evacuee behaviors. Thus, there is an urgent need for an evacuation model capable of capturing complex structures of communities and modeling evacuee responses to various emergencies. This paper presents a novel approach to simulating responsive evacuation behaviors for multiple emergency situations in public communities through spatial network modeling and multi-agent modeling. Leveraging a community network framework adaptable to different community layouts based on map data, the proposed model employs a multi-agent approach to characterize responsive and decentralized evacuation decision-making. Experimental results show the model’s efficacy in representing pedestrian flow and pedestrians’ reactive behavior across various campuses based on real-world map data. Additionally, the case study highlights the potential of the proposed model to simulate pedestrian dynamics for a variety of heterogeneous emergencies. The proposed community evacuation model holds strong promise for evaluating evacuation policies and providing insights into resilient plans during public emergencies, thereby enhancing community safety.  more » « less
Award ID(s):
2302834
PAR ID:
10553720
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-5851-3
Page Range / eLocation ID:
374 to 380
Subject(s) / Keyword(s):
Public Emergency Spatial Network Behavioral Responses Network Model Community Structure Community Networks Multi-agent Approach Network Of Agents Occurrence Of Hazards Evacuation Routes Hazardous Agents
Format(s):
Medium: X
Location:
Bari, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Many coastal communities around the world are threatened by a near-field (or local) tsunami that could inundate the low-lying areas in a matter of minutes after generation. The universal consensus amongst emergency agencies and academic researchers is that a safe evacuation requires an effective response, which is typically assessed by the evacuation time estimate (ETE). ETE is an integral component of community emergency evacuation planning, especially areas prone to tsunamis. This paper aims to investigate the ETE for pedestrian evacuation during a tsunami through two different approaches: (1) the deterministic Least-Cost Distance (LCD) model; and (2) the dynamic Agent-Based Model (ABM). Then, the comparison of the two models in their intrinsic characteristics, strengths and weaknesses, and its applicability was discussed based on methodology behind of the LCD model and ABM. The LCD model was conducted to generate a spatially distributed ETE map, visualizing vulnerable areas where the evacuation time would be insufficient for individuals to reach safety. The ABM investigated uncertainty during tsunami evacuations, such as population distribution, walking speed, and milling time. This paper provides insights into the differences between the LCD model and ABM in terms of methodology and application. It assists the academic researchers and emergency managers, evacuation planners, and decision makers to choose an appropriate method for modeling pedestrian evacuation during tsunami. 
    more » « less
  2. During emergencies, it is often necessary to evacuate vulnerable people to safer places to reduce loss of lives and cope with human suffering. Shelters are publically available places to evacuate, especially for people who do not have any other choices. This paper overviews emergency shelter planning in disaster mitigation and preparation and discusses the need for better responding to people who need to evacuate during emergencies. Recent evacuation studies pay attention to integrating social factors into evacuation modeling for better prediction of evacuation decisions. Our goal is to address the impact of social behavior on the sheltering choices of evacuees and to explore the potential contributions of including social network characteristics in the decision-making process of authorities. We present the shelter utilization problem in South Carolina during Hurricane Florence and discuss an agent-based modeling approach that considers social community structures in modeling the shelter choice behavior of socially connected individuals 
    more » « less
  3. The growing complexity of natural disasters, intensified by climate change, has amplified the challenges of managing emergency shelter demand. Accurate shelter demand forecasting is crucial to optimize resource allocation, prevent overcrowding, and ensure evacuee safety, particularly during concurrent disasters like hurricanes and pandemics. Real-time decision-making during evacuations remains a significant challenge due to dynamic evacuation behaviors and evolving disaster conditions. This study introduces a spatiotemporal modeling framework that leverages connected vehicle data to predict shelter demand using data collected during Hurricane Sally (September 2020) across Santa Rosa, Escambia, and Okaloosa counties in Florida, USA. Using Generalized Additive Models (GAMs) with spatial and temporal smoothing, integrated with GIS tools, the framework captures non-linear evacuation patterns and predicts shelter demand. The GAM outperformed the baseline Generalized Linear Model (GLM), achieving a Root Mean Square Error (RMSE) of 6.7791 and a correlation coefficient (CORR) of 0.8593 for shelters on training data, compared to the GLM’s RMSE of 12.9735 and CORR of 0.1760. For lodging facilities, the GAM achieved an RMSE of 4.0368 and CORR of 0.5485, improving upon the GLM’s RMSE of 4.6103 and CORR of 0.2897. While test data showed moderate declines in performance, the GAM consistently offered more accurate and interpretable results across both facility types. This integration of connected vehicle data with spatiotemporal modeling enables real-time insights into evacuation dynamics. Visualization outputs, like spatial heat maps, provide actionable data for emergency planners to allocate resources efficiently, enhancing disaster resilience and public safety during complex emergencies. 
    more » « less
  4. Abstract Evacuation destination choice modeling is an integral aspect of evacuation planning. Outputs from such models are required to estimate the clearance times on which evacuation orders are based. The number of evacuees arriving at each destination also informs allocation of resources and shelter planning. Despite its importance, evacuee destination modeling has not received as much attention as identifying who evacuates and when. In this study, we present a new approach to identify evacuees and determine where they go and when using privacy-enhanced smartphone location data. We demonstrate the method using data from four recent U.S. hurricanes affecting multiple geographies (Florence 2018, Michael 2018, Dorian 2019, and Ida 2021). We then build on those results to develop a new machine learning model that predicts the number of evacuees that move between pairs of metropolitan statistical areas. The machine learning model incorporates hurricane characteristics, which have not been thoroughly exploited by existing methods. The model’s predictive power is comprehensively evaluated through a tenfold cross validation, holdout validation using Hurricane Ida (2021), and comparison with the traditional gravity model. Results suggest that the new model substantially outperforms the traditional gravity model across all performance indicators. Analysis of feature importance in the machine learning model indicates that in addition to distance and population, hurricane characteristics are important in evacuee destination choices. 
    more » « less
  5. Abstract. Previous tsunami evacuation simulations have mostly been based on arbitrary assumptions or inputs adapted from non-emergency situations, but a few studies have used empirical behavior data. This study bridges this gap by integrating empirical decision data from surveys on local evacuation expectations and evacuation drills into an agent-based model of evacuation behavior for two Cascadia subduction zone (CSZ) communities that would be inundated within 20–40 min after a CSZ earthquake. The model also considers the impacts of liquefaction and landslides from the earthquake on tsunami evacuation. Furthermore, we integrate the slope-speed component from least-cost distance to build the simulation model that better represents the complex nature of evacuations. The simulation results indicate that milling time and the evacuation participation rate have significant nonlinear impacts on tsunami mortality estimates. When people walk faster than 1 m s−1, evacuation by foot is more effective because it avoids traffic congestion when driving. We also find that evacuation results are more sensitive to walking speed, milling time, evacuation participation, and choosing the closest safe location than to other behavioral variables. Minimum tsunami mortality results from maximizing the evacuation participation rate, minimizing milling time, and choosing the closest safe destination outside of the inundation zone. This study's comparison of the agent-based model and the beat-the-wave (BtW) model finds consistency between the two models' results. By integrating the natural system, built environment, and social system, this interdisciplinary model incorporates substantial aspects of the real world into the multi-hazard agent-based platform. This model provides a unique opportunity for local authorities to prioritize their resources for hazard education, community disaster preparedness, and resilience plans. 
    more » « less