skip to main content


Title: High Fidelity Human Modeling via Integration of Skeleton Tracking for Predictive HRC Collision Detection
This paper develops a predictive collision detection algorithm for enhancing safety while respecting productivity in a Human Robot Collaborative (HRC) setting that operates on outputs from a Computer Vision (CV) environmental monitor. This prediction can trigger reactive and proactive robot action. The algorithm is designed to address two key challenges: 1) outputs from CV techniques are often highly noisy and incomplete due to occlusions and other factors, and 2) human tracking CV approaches typically provide a minimal set of points on the human. This noisy set of points must be augmented to define a high-fidelity model of the human’s predicted spatial and temporal occupancy. A filter is applied to decrease sensitivity of the algorithm to errors in the CV predictions. Kinematics of the human are leveraged to infer a full model of the human from a set of, at most, 18 points, and transform them into a point cloud occupying the swept volume of the human’s motion. This form can then quickly be compared with a compatible robot model for collision detection. Timed tests show that creation of human and robot models, and the subsequent collision check occurs in less than 30 ms on average, making this algorithm real-time capable.  more » « less
Award ID(s):
1830383
NSF-PAR ID:
10352735
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASME International Mechanical Engineering Congress and Exposition
Volume:
2B
Issue:
Advanced Manufacturing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shared control of mobile robots integrates manual input with auxiliary autonomous controllers to improve the overall system performance. However, prior work that seeks to find the optimal shared control ratio needs an accurate human model, which is usually challenging to obtain. In this study, the authors develop an extended Twin Delayed Deep Deterministic Policy Gradient (DDPG) (TD3X)‐based shared control framework that learns to assist a human operator in teleoperating mobile robots optimally. The robot's states, shared control ratio in the previous time step, and human's control input is used as inputs to the reinforcement learning (RL) agent, which then outputs the optimal shared control ratio between human input and autonomous controllers without knowing the human model. Noisy softmax policies are developed to make the TD3X algorithm feasible under the constraint of a shared control ratio. Furthermore, to accelerate the training process and protect the robot, a navigation demonstration policy and a safety guard are developed. A neural network (NN) structure is developed to maintain the correlation of sensor readings among heterogeneous input data and improve the learning speed. In addition, an extended DAGGER (DAGGERX) human agent is developed for training the RL agent to reduce human workload. Robot simulations and experiments with humans in the loop are conducted. The results show that the DAGGERX human agent can simulate real human inputs in the worst‐case scenarios with a mean square error of 0.0039. Compared to the original TD3 agent, the TD3X‐based shared control system decreased the average collision number from 387.3 to 44.4 in a simplistic environment and 394.2 to 171.2 in a more complex environment. The maximum average return increased from 1043 to 1187 with a faster converge speed in the simplistic environment, while the performance is equally good in the complex environment because of the use of an advanced human agent. In the human subject tests, participants' average perceived workload was significantly lower in shared control than that in exclusively manual control (26.90 vs. 40.07,p = 0.013).

     
    more » « less
  2. Abstract Sensing for wearable robots is an ongoing challenge, especially given the recent trend of soft and compliant robots. Recently, a wearable origami exoshell has been designed to sense the user’s torso motion and provide mobility assistance. The materials of the exoshell contribute to a lightweight design with compliant joints, which are ideal characteristics for a wearable device. Common sensors are not ideal for the exoshell as they compromise these design characteristics. Rotary encoders are often rigid metal devices that add considerable weight and compromise the flexibility of the joints. Inertial measurement unit sensors are affected by environments with variable electromagnetic fields and therefore not ideal for wearable applications. Hall effect sensors and gyroscopes are utilized as alternative compatible sensors, which introduce their own set of challenges: noisy measurements and drift due to sensor bias. To mitigate this, we designed the Kinematically Constrained Kalman filter for sensor fusion of gyroscopes and Hall effect sensors, with the goal of estimating the human’s torso and robot joint angles. We augmented the states to consider bias related to the torso angle in order to compensate for drift. The forward kinematics of the robot is incorporated into the Kalman filter as state constraints to address the unobservability of the torso angle and its related bias. The proposed algorithm improved the estimation performance of the torso angle and its bias, compared to the individual sensors and the standard Kalman filter, as demonstrated through bench tests and experiments with a human user. 
    more » « less
  3. Shared autonomy provides an effective framework for human-robot collaboration that takes advantage of the complementary strengths of humans and robots to achieve common goals. Many existing approaches to shared autonomy make restrictive assumptions that the goal space, environment dynamics, or human policy are known a priori, or are limited to discrete action spaces, preventing those methods from scaling to complicated real world environments. We propose a model-free, residual policy learning algorithm for shared autonomy that alleviates the need for these assumptions. Our agents are trained to minimally adjust the human’s actions such that a set of goal-agnostic constraints are satisfied. We test our method in two continuous control environments: Lunar Lander, a 2D flight control domain, and a 6-DOF quadrotor reaching task. In experiments with human and surrogate pilots, our method significantly improves task performance without any knowledge of the human’s goal beyond the constraints. These results highlight the ability of model-free deep reinforcement learning to realize assistive agents suited to continuous control settings with little knowledge of user intent. 
    more » « less
  4. null (Ed.)
    Robot manipulation and grasping mechanisms have received considerable attention in the recent past, leading to development of wide-range of industrial applications. This paper proposes the development of an autonomous robotic grasping system for object sorting application. RGB-D data is used by the robot for performing object detection, pose estimation, trajectory generation and object sorting tasks. The proposed approach can also handle grasping on certain objects chosen by users. Trained convolutional neural networks are used to perform object detection and determine the corresponding point cloud cluster of the object to be grasped. From the selected point cloud data, a grasp generator algorithm outputs potential grasps. A grasp filter then scores these potential grasps, and the highest-scored grasp will be chosen to execute on a real robot. A motion planner will generate collision-free trajectories to execute the chosen grasp. The experiments on AUBO robotic manipulator show the potentials of the proposed approach in the context of autonomous object sorting with robust and fast sorting performance. 
    more » « less
  5. For a wearable robotic arm to autonomously assist a human, it has to be able to stabilize its end-effector in light of the human’s independent activities. This paper presents a method for stabilizing the end-effector in planar assembly and pick-and-place tasks. Ideally, given an accurate positioning of the end effector and the wearable robot attachment point, human disturbances could be compensated by using a simple feedback control strategy. Realistically, system delays in both sensing and actuation suggest a predictive approach. In this work, we characterize the actuators of a wearable robotic arm and estimate these delays using linear models. We then consider the motion of the human arm as an autoregressive process to predict the deviation in the robot’s base position at a time horizon equivalent to the estimated delay. Generating set points for the end-effector using this predictive model, we report reduced position errors of 19.4% (x) and 20.1% (y) compared to a feedback control strategy without prediction. 
    more » « less