skip to main content

Title: Early Holocene permafrost retreat in West Siberia amplified by reorganization of westerly wind systems
Abstract Rapid permafrost degradation and peatland expansion occurred in Eurasia during the Early Holocene and may be analogous to the region’s response to anthropogenic warming. Here we present a 230 Th-dated, multiproxy speleothem record with subdecadal sampling resolution from Kyok-Tash Cave, at the modern permafrost margin in the northern Altai Mountains, southwestern Siberia. Stalagmite K4, covering the period 11,400 to 8,900 years before present, indicates an absence of stable permafrost within three centuries of the Younger Dryas termination. Between 11,400 and 10,400 years ago, speleothem δ 18 O is antiphased between the Altai and Ural ranges, suggesting a reorganization of the westerly wind systems that led to warmer and wetter winters over West Siberia and Altai, relative to the zonally adjacent regions of Northern Eurasia. At the same time, there is evidence of peak permafrost degradation and peatland expansion in West Siberia, consistent with the interpreted climate anomaly. Based on these findings, we suggest that modern permafrost in Eurasia is sensitive to feedbacks in the ocean-cryosphere system, which are projected to alter circulation regimes over the continent.
; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Communications Earth & Environment
Sponsoring Org:
National Science Foundation
More Like this
  1. The sources of atmospheric methane (CH4) during the Holocene remain widely debated, including the role of high latitude wetland and peatland expansion and fen-to-bog transitions. We reconstructed CH4 emissions from northern peatlands from 13,000 before present (BP) to present using an empirical model based on observations of peat initiation (>3600 14C dates), peatland type (>250 peat cores), and contemporary CH4 emissions in order to explore the effects of changes in wetland type and peatland expansion on CH4 emissions over the end of the late glacial and the Holocene. We find that fen area increased steadily before 8000 BP as fens formed in major wetland complexes. After 8000 BP, new fen formation continued but widespread peatland succession (to bogs) and permafrost aggradation occurred. Reconstructed CH4 emissions from peatlands increased rapidly between 10,600 BP and 6900 BP due to fen formation and expansion. Emissions stabilized after 5000 BP at 42 ± 25 Tg CH4 y-1 as high-emitting fens transitioned to lower-emitting bogs and permafrost peatlands. Widespread permafrost formation in northern peatlands after 1000 BP led to drier and colder soils which decreased CH4 emissions by 20% to 34 ± 21 Tg y-1 by the present day.
  2. Following the call to mobilize studies of social-ecological systems and sociotechnical systems, the paper presents the case for studying integrated social-ecological-technological systems (SETS), and dynamic systems that include social, natural and technological (engineering) elements. Using the case study of informal roads in the Baikal region, authors of the article argue that re-focusing on SETS creates additional synergies and convergence options to improve the understanding of coupled systems and infrastructure in particular. Historically, transportation infrastructure has contributed to changes in natural and social systems of Northern Eurasia: Transsiberian and Baikal-Amur railroads and East Siberia – Pacific Ocean and Power of Siberia pipelines have been the main drivers of social-ecological transitions. At the local scale, informal roads serve as one of the most illustrative and characteristic examples of SETS. The examination of development and transformation of the informal roads allows exploring the interactions between socioeconomic processes, ecological dynamics and technological advances. The variety of informal roads reflects the importance of specific social, natural or technological factors in the SETS transformation largely unconditioned by policy and regulations thus providing a unique opportunity to better understand sustainability challenges facing infrastructure-based SETS. Relying on interviews and in-situ observations conducted in 2019 in the Baikal region,more »the following factors affecting sustainability of informal road SETS were identified: social (identification of actors involved in location, construction, maintenance, use and abandonment of informal roads), technological (road cover, width, frequency and nature of use by different kinds of vehicles), environmental (geomorphology and landscape sensitivity and vulnerability). The sustainability challenges of SETS development and transformations are found in changing mobility practices, social structure and economies of local communities, increased occurrences of forest fires and development of erosion and permafrost degradation in local environment and push for development of new technologies of transportation and communication.« less
  3. Rapid Arctic warming is expected to result in widespread permafrost degradation. However, observations show that site-specific conditions (vegetation and soils) may offset the reaction of permafrost to climate change. This paper summarizes 43 years of interannual seasonal thaw observations from tundra landscapes surrounding the Marre-Sale on the west coast of the Yamal Peninsula, northwest Siberia. This robust dataset includes landscape-specific climate, active layer thickness, soil moisture, and vegetation observations at multiple scales. Long-term trends from these hierarchically scaled observations indicate that drained landscapes exhibit the most pronounced responses to changing climatic conditions, while moist and wet tundra landscapes exhibit decreasing active layer thickness, and river floodplain landscapes do not show changes in the active layer. The slow increase in seasonal thaw depth despite significant warming observed over the last four decades on the Yamal Peninsula can be explained by thickening moss covers and ground surface subsidence as the transient layer (ice-rich upper permafrost soil horizon) thaws and compacts. The uneven proliferation of specific vegetation communities, primarily mosses, is significantly contributing to spatial variability observed in active layer dynamics. Based on these findings, we recommend that regional permafrost assessments employ a mean landscape-scale active layer thickness that weights the proportions ofmore »different landscape types.« less
  4. Abstract

    The fossil record suggests that at least two major human dispersals occurred across the Eurasian steppe during the Late Pleistocene. Neanderthals and Modern Humans moved eastward into Central Asia, a region intermittently occupied by the enigmatic Denisovans. Genetic data indicates that the Denisovans interbred with Neanderthals near the Altai Mountains (South Siberia) but where and when they metH. sapiensis yet to be determined. Here we present archaeological evidence that document the timing and environmental context of a third long-distance population movement in Central Asia, during a temperate climatic event around 45,000 years ago. The early occurrence of the Initial Upper Palaeolithic, a techno-complex whose sudden appearance coincides with the first occurrence ofH. sapiensin the Eurasian steppes, establishes an essential archaeological link between the Siberian Altai and Northwestern China . Such connection between regions provides empirical ground to discuss contacts between local and exogenous populations in Central and Northeast Asia during the Late Pleistocene.

  5. Abstract

    Transpiration and stomatal conductance in deciduous needleleaf boreal forests of northern Siberia can be highly sensitive to water stress, permafrost thaw, and atmospheric dryness. Additionally, north‐eastern Siberian boreal forests are fire‐driven, and larch (Larixspp.) are the sole tree species. We examined differences in tree water use, stand characteristics, and stomatal responses to environmental drivers between high and low tree density stands that burned 76 years ago in north‐eastern Siberia. Our results provide process‐level insight to climate feedbacks related to boreal forest productivity, water cycles, and permafrost across Arctic regions. The high density stand had shallower permafrost thaw depths and deeper moss layers than the low density stand. Rooting depths and shallow root biomass were similar between stands. Daily transpiration was higher on average in the high‐density stand 0.12 L m−2 day−1(SE: 0.004) compared with the low density stand 0.10 L m−2 day−1(SE: 0.001) throughout the abnormally wet summer of 2016. Transpiration rates tended to be similar at both stands during the dry period in 2017 in both stands of 0.10 L m−2 day−1(SE: 0.002). The timing of precipitation impacted stomatal responses to environmental drivers, and the high density stand was more dependent on antecedent precipitation that occurred over longer periods in the past compared with the low density stand.more »Post‐fire tree density differences in plant–water relations may lead to different trajectories in plant mortality, water stress, and ecosystem water cycles across Siberian landscapes.

    « less