Abstract Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentataNutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: −6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: −47.9%, −41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.
more »
« less
Assessing the reliability of species distribution models in the face of climate and ecosystem regime shifts: Small pelagic fishes in the California Current System
Species distribution models (SDMs) are a commonly used tool, which when combined with earth system models (ESMs), can project changes in organismal occurrence, abundance, and phenology under climate change. An often untested assumption of SDMs is that relationships between organisms and the environment are stationary. To evaluate this assumption, we examined whether patterns of distribution among larvae of four small pelagic fishes (Pacific sardine Sardinops sagax , northern anchovy Engraulis mordax , jack mackerel Trachurus symmetricus , chub mackerel Scomber japonicus ) in the California Current remained steady across time periods defined by climate regimes, changes in secondary productivity, and breakpoints in time series of spawning stock biomass (SSB). Generalized additive models (GAMs) were constructed separately for each period using temperature, salinity, dissolved oxygen (DO), and mesozooplankton volume as predictors of larval occurrence. We assessed non-stationarity based on changes in six metrics: 1) variables included in SDMs; 2) whether a variable exhibited a linear or non-linear form; 3) rank order of deviance explained by variables; 4) response curve shape; 5) degree of responsiveness of fishes to a variable; 6) range of environmental variables associated with maximum larval occurrence. Across all species and time periods, non-stationarity was ubiquitous, affecting at least one of the six indicators. Rank order of environmental variables, response curve shape, and oceanic conditions associated with peak larval occurrence were the indicators most subject to change. Non-stationarity was most common among regimes defined by changes in fish SSB. The relationships between larvae and DO were somewhat more likely to change across periods, whereas the relationships between fishes and temperature were more stable. Respectively, S. sagax , T. symmetricus , S. japonicus , and E. mordax exhibited non-stationarity across 89%, 67%, 50%, and 50% of indicators. For all species except E. mordax , inter-model variability had a larger impact on projected habitat suitability for larval fishes than differences between two climate change scenarios (SSP1-2.6 and SSP5-8.5), implying that subtle differences in model formulation could have amplified future effects. These results suggest that the widespread non-stationarity in how fishes utilize their environment could hamper our ability to reliably project how species will respond to climatic change.
more »
« less
- Award ID(s):
- 2049624
- PAR ID:
- 10353320
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 9
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding the ranges of rare and endangered species is central to conserving biodiversity in the Anthropocene. Species distribution models (SDMs) have become a common and powerful tool for analyzing species–environment relationships across geographic space. Although evaluating the distribution of rare species is integral to their conservation, this can be difficult when limited distribution data are available. Community science platforms, such as iNaturalist, have emerged as alternative sources for species occurrence data. Although these observations are often thought to be of lower quality than those of natural history collections, they may have potential for improving SDMs for species with few occurrence records from collections. Here, we investigate the utility of iNaturalist data for developing SDMs for a rare high‐elevation plant,Telesonix jamesii. Because methods for modeling rare species are limited in the literature, five different modeling techniques were considered, including profile methods, statistical models, and machine learning algorithms. The inclusion of iNaturalist data doubled the number of usable records forT. jamesii.We found that a random forest (RF) model using ensemble training data performed the highest of any model (area under curve = 0.98). We then compared the performance of RF models that use only natural history training data and those that use a combination of natural history (herbarium specimens) and iNaturalist training data. All models heavily relied on climate data (mean temperature of driest quarter, and precipitation of the warmest quarter), indicating that this species is under threat as climate continues to change. Validation datasets affected model fits as well. Models using only herbarium data performed slightly poorer when evaluated with cross‐validation than when validated externally with iNaturalist data. This study can serve as a model for future SDM studies of species with similar data limitations.more » « less
-
null (Ed.)Abstract Mosquito bacterial communities are essential in mosquito biology, and knowing the factors shaping these bacterial communities is critical to their application in mosquito-borne disease control. This study investigated how the larval environment influences the bacterial communities of larval stages of two container-dwelling mosquito species, Aedes triseriatus, and Aedes japonicus. Larval and water samples were collected from tree holes and used tires at two study sites, and their bacteria characterized through MiSeq sequencing of the 16S rRNA gene. Bacterial richness was highest in Ae. japonicus , intermediate in Ae. triseriatus , and lowest in water samples. Dysgonomonas was the dominant bacterial taxa in Ae. triseriatus larvae; the unclassified Comamonadaceae was dominant in water samples from waste tires, while Mycobacterium and Carnobacterium , dominated Ae. japonicus . The two mosquito species harbored distinct bacterial communities that were different from those of the water samples. The bacterial communities also clustered by habitat type (used tires vs. tree holes) and study site. These findings demonstrate that host species, and the larval sampling environment are important determinants of a significant component of bacterial community composition and diversity in mosquito larvae and that the mosquito body may select for microbes that are generally rare in the larval environment.more » « less
-
Dainton, John (Ed.)Improving models of species' distributions is essential for conservation, especially in light of global change. Species distribution models (SDMs) often rely on mean environmental conditions, yet species distributions are also a function of environmental heterogeneity and filtering acting at multiple spatial scales. Geodiversity, which we define as the variation of abiotic features and processes of Earth's entire geosphere (inclusive of climate), has potential to improve SDMs and conservation assessments, as they capture multiple abiotic dimensions of species niches, however they have not been sufficiently tested in SDMs. We tested a range of geodiversity variables computed at varying scales using climate and elevation data. We compared predictive performance of MaxEnt SDMs generated using CHELSA bioclimatic variables to those also including geodiversity variables for 31 mammalian species in Colombia. Results show the spatial grain of geodiversity variables affects SDM performance. Some variables consistently exhibited an increasing or decreasing trend in variable importance with spatial grain, showing slight scale-dependence and indicating that some geodiversity variables are more relevant at particular scales for some species. Incorporating geodiversity variables into SDMs, and doing so at the appropriate spatial scales, enhances the ability to model species-environment relationships, thereby contributing to the conservation and management of biodiversity. This article is part of the Theo Murphy meeting issue ‘Geodiversity for science and society’.more » « less
-
Summary Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate‐sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges.Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel ‘phenology‐informed’ SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology‐informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting.When examining the range changes of all species, our phenology‐informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes.Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait‐based SDMs across spatial and taxonomic scales.more » « less
An official website of the United States government

