skip to main content


Title: On the Jet–Ejecta Interaction in 3D GRMHD Simulations of a Binary Neutron Star Merger Aftermath
Abstract Short γ -ray burst (sGRB) jets form in the aftermath of a neutron star merger, drill through disk winds and dynamical ejecta, and extend over four to five orders of magnitude in distance before breaking out of the ejecta. We present the first 3D general-relativistic magnetohydrodynamic sGRB simulations to span this enormous scale separation. They feature three possible outcomes: jet+cocoon, cocoon, and neither. Typical sGRB jets break out of the dynamical ejecta if (i) the bound ejecta’s isotropic equivalent mass along the pole at the time of the BH formation is ≲10 −4 M ⊙ , setting a limit on the delay time between the merger and BH formation, otherwise, the jets perish inside the ejecta and leave the jet-inflated cocoon to power a low-luminosity sGRB; (ii) the postmerger remnant disk contains a strong large-scale vertical magnetic field, ≳10 15 G; and (iii) if the jets are weak (≲10 50 erg), the ejecta’s isotropic equivalent mass along the pole must be small (≲10 −2 M ⊙ ). Generally, the jet structure is shaped by the early interaction with disk winds rather than the dynamical ejecta. As long as our jets break out of the ejecta, they retain a significant magnetization (≲1), suggesting that magnetic reconnection is a fundamental property of sGRB emission. The angular structure of the outflow isotropic equivalent energy after breakout consistently features a flat core followed by a steep power-law distribution (slope ≳3), similar to hydrodynamic jets. In the cocoon-only outcome, the dynamical ejecta broadens the outflow angular distribution and flattens it (slope ∼1.5).  more » « less
Award ID(s):
2107839 1815304 2031997
NSF-PAR ID:
10353390
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
933
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Radio-loud active galactic nuclei (RLAGNs) are a unique AGN population and were thought to be preferentially associated with supermassive black holes (SMBHs) at low accretion rates. They could impact the host galaxy evolution by expelling cold gas through the jet-mode feedback. In this work, we studied CO(6−5) line emission and continuum emission in a high-redshift radio galaxy, MRC 0152−209, at z = 1.92 using ALMA (Atacama Large Millimeter/submillimeter Array) up to a 0.024″ resolution (corresponding to ∼200 pc at z = 1.92). This system is a starburst major merger comprising two galaxies: the north-west (NW) galaxy hosting the RLAGN with jet kinetic power Ljet ≳ 2 × 1046  erg s−1 and the other galaxy to the south-east (SE). Based on the spectral energy distribution fitting for the entire system (NW+SE galaxies), we find an AGN bolometric luminosity LAGN, bol ∼ 3 × 1046  erg s−1 with a lower limit of ∼0.9 × 1046  erg s−1 for the RLAGN. We estimate the black hole mass through MBH–M⋆ scaling relations and find an Eddington ratio of λEdd ∼ 0.07–4 conservatively by adopting the lower limit of LAGN, bol and considering the dispersion of the scaling relation. These results suggest that the RLAGN is radiatively efficient and the powerful jets could be launched from a super-Eddington accretion disc. ALMA Cycle 6 observations further reveal a massive (${M}_\mathrm{H_2}=(1.1-2.3)\times 10^9\ \rm M_\odot$), compact (∼500 pc), and monopolar molecular outflow perpendicular to the jet axis. The corresponding mass outflow rate ($1200^{+300}_{-300}-2600^{+600}_{-600}\ \mathrm{M_\odot }\ \rm yr^{-1}$) is comparable with the star formation rate of at least $\sim 2100\ \mathrm{M_\odot }\ \rm yr^{-1}$. Depending on the outflowing molecular gas mass, the outflow kinetic power/LAGN, bol ratio of ∼0.008–0.02, and momentum boost factor of ∼3–24 agree with a radiative-mode AGN feedback scenario. On the other hand, the jets can also drive the molecular outflow within its lifetime of ∼2 × 105 yr without additional energy supply from AGN radiation. The jet-mode feedback is then capable of removing all cold gas from the host galaxy through the long-term, episodic launching of jets. Our study reveals a unique object where starburst activity, powerful jets, and rapid BH growth co-exist, which may represent a fundamental stage of AGN-host galaxy co-evolution.

     
    more » « less
  2. Abstract

    The spin of a newly formed black hole (BH) at the center of a massive star evolves from its natal value due to two competing processes: accretion of gas angular momentum that increases the spin and extraction of BH angular momentum by outflows that decreases the spin. Ultimately, the final, equilibrium spin is set by a balance between both processes. In order for the BH to launch relativistic jets and power aγ-ray burst (GRB), the BH magnetic field needs to be dynamically important. Thus, we consider the case of a magnetically arrested disk (MAD) driving the spin evolution of the BH. By applying the semianalytic MAD BH spin evolution model of Lowell et al. to collapsars, we show that if the BH accretes ∼20% of its initial mass, its dimensionless spin inevitably reaches small values,a≲ 0.2. For such spins, and for mass accretion rates inferred from collapsar simulations, we show that our semianalytic model reproduces the energetics of typical GRB jets,Ljet∼ 1050erg s−1. We show that our semianalytic model reproduces the nearly constant power of typical GRB jets. If the MAD onset is delayed, this allows powerful jets at the high end of the GRB luminosity distribution,Ljet∼ 1052erg s−1, but the final spin remains low,a≲ 0.3. These results are consistent with the low spins inferred from gravitational wave detections of binary BH mergers. In a companion paper by Gottlieb et al., we use GRB observations to constrain the natal BH spin to bea≃ 0.2.

     
    more » « less
  3. Abstract

    Models invoking magnetic reconnection as the particle acceleration mechanism within relativistic jets often adopt a gradual energy dissipation profile within the jet. However, such a profile has yet to be reproduced in first-principles simulations. Here we perform a suite of 3D general relativistic magnetohydrodynamic simulations of post–neutron star merger disks with an initially purely toroidal magnetic field. We explore the variations in both the microphysics (e.g., nuclear recombination, neutrino emission) and system parameters (e.g, disk mass). In all of our simulations, we find the formation of magnetically striped jets. The stripes result from the reversals in the poloidal magnetic flux polarity generated in the accretion disk. The simulations display large variations in the distributions of stripe duration,τ, and power, 〈PΦ〉. We find that more massive disks produce more powerful stripes, the most powerful of which reaches 〈PΦ〉 ∼ 1049erg s−1atτ∼ 20 ms. The power and variability that result from the magnetic reconnection of the stripes agree with those inferred in short-duration gamma-ray bursts. We find that the dissipation profile of the cumulative energy is roughly a power law in both radial distance,z, andτ, with a slope in the range of ∼1.7–3; more massive disks display larger slopes.

     
    more » « less
  4. ABSTRACT

    We consider conditions for jet breakout through ejecta following mergers of neutron stars and provide simple relations for the breakout conditions. We demonstrate that: (i) break-out requires that the isotropic-equivalent jet energy Ej exceeds the ejecta energy Eej by Ej ≥ Eej/βej, where βej = Vej/c, Vej is the maximum velocity of the ejecta. If the central engine terminates before the breakout, the shock approaches the edge of the ejecta slowly ∝ 1/t; late breakout occurs only if at the termination moment the head of the jet was relatively close to the edge. (ii) If there is a substantial delay between the ejecta’s and the jet’s launching, the requirement on the jet power increases. (iii) The forward shock driven by the jet is mildly strong, with Mach number M ≈ 5/4 (increasing with time delay td); (iii) the delay time td between the ejecta and the jet’s launching is important for $t_\mathrm{ d} \gt t_0= ({3 }/{16}) {c M_{\mathrm{ ej}} V_{\mathrm{ ej}}}/{L_\mathrm{ j}} = 1.01 {\rm \mathrm{ s}} M_{\mathrm{ ej}, -2} L_{\mathrm{ j}, 51} ^{-1} \left({\beta _{\mathrm{ ej}}} /{0.3} \right)$, where Mej is ejecta mass, Lj is the jet luminosity (isotropic equivalent). For small delays, t0 is also an estimate of the break-out time.

     
    more » « less
  5. Abstract

    The conventional accretion disk lore is that magnetized turbulence is the principal angular momentum transport process that drives accretion. However, when dynamically important large-scale magnetic fields thread an accretion disk, they can produce mass and angular momentum outflows, known as winds,that also drive accretion. Yet, the relative importance of turbulent and wind-driven angular momentum transport is still poorly understood. To probe this question, we analyze a long-duration (1.2 × 105rg/c) simulation of a rapidly rotating (a= 0.9) black hole feeding from a thick (H/r∼ 0.3), adiabatic, magnetically arrested disk (MAD), whose dynamically important magnetic field regulates mass inflow and drives both uncollimated and collimated outflows (i.e., winds and jets, respectively). By carefully disentangling the various angular momentum transport processes within the system, we demonstrate the novel result that disk winds and disk turbulence both extract roughly equal amounts of angular momentum from the disk. We find cumulative angular momentum and mass accretion outflow rates ofL̇r0.9andṀr0.4, respectively. This result suggests that understanding both turbulent and laminar stresses is key to understanding the evolution of systems where geometrically thick MADs can occur, such as the hard state of X-ray binaries, low-luminosity active galactic nuclei, some tidal disruption events, and possibly gamma-ray bursts.

     
    more » « less