skip to main content


Title: Dark matter scattering in astrophysical media: collective effects
Abstract It is well-known that stars have the potential to be excellent dark matter detectors. Infalling dark matter that scatters within stars could lead to a range of observational signatures, including stellar heating, black hole formation, and modified heat transport. To make robust predictions for such phenomena, it is necessary to calculate the scattering rate for dark matter inside the star. As we show in this paper, for small enough momentum transfers, this requires taking into account  collective effects within the dense stellar medium. These effects have been neglected in many previous treatments; we demonstrate how to incorporate them systematically, and show that they can parametrically enhance or suppress dark matter scattering rates depending on how dark matter couples to the Standard Model. We show that, as a result, collective effects can significantly modify the potential discovery or exclusion reach for observations of compact objects such as white dwarfs and neutron stars. While the effects are more pronounced for dark matter coupling through a light mediator, we show that even for dark matter coupling via a heavy mediator, scattering rates can differ by orders of magnitude from their naive values for dark matter masses ≲ 100 MeV. We also illustrate how collective effects can be important for dark matter scattering in more dilute media, such as the Solar core. Our results demonstrate the need to systematically incorporate collective effects in a wide range of astroparticle contexts; to facilitate this, we provide expressions for in-medium self-energies for a variety of different media, which are applicable to many other processes of interest (such as particle production).  more » « less
Award ID(s):
2014215
NSF-PAR ID:
10353399
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2022
Issue:
05
ISSN:
1475-7516
Page Range / eLocation ID:
015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional dark matter models, e.g., weakly interacting massive particles (WIMPs), assume dark matter (DM) is weakly coupled to the standard model so that elastic scattering between dark matter and baryons can be described perturbatively by the Born approximation; most direct detection experiments are analyzed according to that assumption. We show that when the fundamental DM-baryon interaction is attractive, dark matter-nucleus scattering is nonperturbative in much of the relevant parameter range. The cross section exhibits rich resonant behavior with a highly nontrivial dependence on atomic mass; furthermore, the extended rather than pointlike nature of nuclei significantly impacts the cross sections and must therefore be properly taken into account. The repulsive case also shows significant departures from perturbative predictions and also requires full numerical calculation. These nonperturbative effects change the boundaries of exclusion regions from existing direct detection, astrophysical and CMB constraints. Near a resonance value of the parameters the typical velocity-independent Yukawa behavior, σ ∼ v0, does not apply. We take the nontrivial velocity dependence into account in our analysis, however it turns out that this more accurate treatment has little impact on limits given current constraints. Correctly treating the extended size of the nucleus and doing an exact integration of the Schrödinger equation does have a major impact relative to past analyses based on the Born approximation and naive form factors, so those improvements are essential for interpreting observational constraints. We report the corrected exclusion regions superseding previous limits from XQC, CRESST Surface Run, CMB power spectrum and extensions with Lyman-α and Milky Way satellites, and Milky Way gas clouds. Some limits become weaker, by an order of magnitude or more, than previous bounds in the literature which were based on perturbation theory and pointlike sources, while others become stronger. Gaps which open by correct treatment of some particular constraint can sometimes be closed using a different constraint. We also discuss the dependence on mediator mass and give approximate expressions for the velocity dependence near a resonance. Sexaquark (uuddss) DM with mass around 2 GeV, which exchanges QCD mesons with baryons, remains unconstrained for most of the parameter space of interest. A statement in the literature that a DM-nucleus cross section larger than 10−25 cm2 implies dark matter is composite, is corrected. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present a suite of baryonic cosmological zoom-in simulations of self-interacting dark matter (SIDM) haloes within the ‘Feedback In Realistic Environment’ (FIRE) project. The three simulated haloes have virial masses of $\sim 10^{12}\, \text{M}_\odot$ at z = 0, and we study velocity-independent self-interaction cross sections of 1 and 10 ${\rm cm^2 \, g^{-1}}$. We study star formation rates and the shape of dark matter density profiles of the parent haloes in both cold dark matter (CDM) and SIDM models. Galaxies formed in the SIDM haloes have higher star formation rates at z ≤ 1, resulting in more massive galaxies compared to the CDM simulations. While both CDM and SIDM simulations show diverse shape of the dark matter density profiles, the SIDM haloes can reach higher and more steep central densities within few kpcs compared to the CDM haloes. We identify a correlation between the build-up of the stars within the half-mass radii of the galaxies and the growth in the central dark matter densities. The thermalization process in the SIDM haloes is enhanced in the presence of a dense stellar component. Hence, SIDM haloes with highly concentrated baryonic profiles are predicted to have higher central dark matter densities than the CDM haloes. Overall, the SIDM haloes are more responsive to the presence of a massive baryonic distribution than their CDM counterparts. 
    more » « less
  3. ABSTRACT Gravitational lensing of fast radio bursts (FRBs) offers an exciting avenue for several cosmological applications. However, it is not yet clear how many such events future surveys will detect nor how to optimally find them. We use the known properties of FRBs to forecast detection rates of gravitational lensing on delay time-scales from microseconds to years, corresponding to lens masses spanning 15 orders of magnitude. We highlight the role of the FRB redshift distribution on our ability to observe gravitational lensing. We consider cosmological lensing of FRBs by stars in foreground galaxies and show that strong stellar lensing will dominate on microsecond time-scales. Upcoming surveys such as DSA-2000 and CHORD will constrain the fraction of dark matter in compact objects (e.g. primordial black holes) and may detect millilensing events from intermediate mass black holes (IMBHs) or small dark matter halos. Coherent all-sky monitors will be able to detect longer-duration lensing events from massive galaxies, in addition to short time-scale lensing. Finally, we propose a new application of FRB gravitational lensing that will measure directly the circumgalactic medium of intervening galaxies. 
    more » « less
  4. ABSTRACT

    We present a suite of 16 high-resolution hydrodynamic simulations of an isolated dwarf galaxy (gaseous and stellar disc plus a stellar bulge) within an initially cuspy dark matter (DM) halo, including self-interactions between the DM particles; as well as stochastic star formation and subsequent supernova feedback (SNF), implemented using the stellar feedback model SMUGGLE. The simulations start from identical initial conditions, and we regulate the strength of DM self-interactions and SNF by systematically varying the self-interacting DM (SIDM) momentum transfer cross-section and the gas density threshold for star formation. The DM halo forms a constant density core of similar size and shape for several combinations of those two parameters. Haloes with cores that are formed due to SIDM (adiabatic cusp-core transformation) have velocity dispersion profiles that are closer to isothermal than those of haloes with cores that are formed due to SNF in simulations with bursty star formation (impulsive cusp-core transformation). Impulsive SNF can generate positive stellar age gradients and increase random motion in the gas at the centre of the galaxy. Simulated galaxies in haloes with cores that were formed adiabatically are spatially more extended, with stellar metallicity gradients that are shallower (at late times) than those of galaxies in other simulations. Such observable properties of the gas and the stars, which indicate either an adiabatic or an impulsive evolution of the gravitational potential, may be used to determine whether observed cores in DM haloes are formed through DM self-interactions or in response to impulsive SNF.

     
    more » « less
  5. Abstract

    Recent observations have revealed a trove of unexpected morphological features in many of the Milky Way’s stellar streams. Explanations for such features include time-dependent deformations of the Galactic gravitational potential, local disruptions induced by dark matter substructure, and special configurations of the streams’ progenitors. In this paper, we study how these morphologies can also arise in certain static, nonspherical gravitational potentials that host a subset of resonantly trapped orbit families. The transitions, or separatrices, between these orbit families mark abrupt discontinuities in the orbital structure of the potential. We develop a novel numerical approach for measuring the libration frequencies of resonant and near-resonant orbits and apply it to study the evolution of stellar streams on these orbits. We reveal two distinct morphological features that arise in streams on near-resonant orbits: fans, which come about due to a large spread in the libration frequencies near a separatrix, and bifurcations, which arise when a separatrix splits the orbital distribution of the stellar stream between two (or more) distinct orbit families. We demonstrate that these effects can arise in some Milky Way streams for certain choices of the dark matter halo potential and discuss how this might be used to probe and constrain the global shape of the Milky Way’s gravitational potential.

     
    more » « less