skip to main content


Title: Hard superellipse phases: particle shape anisotropy & curvature
We report computer simulations of two-dimensional convex hard superellipse particle phases vs. particle shape parameters including aspect ratio, corner curvature, and sidewall curvature. Shapes investigated include disks, ellipses, squares, rectangles, and rhombuses, as well as shapes with non-uniform curvature including rounded squares, rounded rectangles, and rounded rhombuses. Using measures of orientational order, order parameters, and a novel stretched bond orientational order parameter, we systematically identify particle shape properties that determine liquid crystal and crystalline phases including their coarse boundaries and symmetry. We observe phases including isotropic, nematic, tetratic, plastic crystals, square crystals, and hexagonal crystals (including stretched variants). Our results catalog known benchmark shapes, but include new shapes that also interpolate between known shapes. Our results indicate design rules for particle shapes that determine two-dimensional liquid, liquid crystalline, and crystalline microstructures that can be realized via particle assembly.  more » « less
Award ID(s):
1928950
NSF-PAR ID:
10353590
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
6
ISSN:
1744-683X
Page Range / eLocation ID:
1319 to 1330
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined via particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies. 
    more » « less
  2. Orientational ordering is a necessary step in the crystallization of molecules and anisotropic colloids. Plastic crystals, which are possible mesophases between the fluid and fully ordered crystal, are translationally ordered but exhibit no long range orientational order. Here, we study the two-dimensional phase behavior of hard regular polygons with edge number n = 3–12. This family of particles provides a model system to isolate the effect of shape and symmetry on the existence of plastic crystal phases. We show that the symmetry group of the particle, G , and the symmetry group of the local environment in the crystal, H , together determine plastic colloidal crystal phase behavior in two dimensions. If G contains completely the symmetry elements of H , then a plastic crystal phase is absent. If G and H share some but not all nontrivial symmetry elements, then a plastic crystal phase exists with preferred particle orientations that recover the absent symmetry elements of the crystal; we call this phase the discrete plastic crystal phase. If G and H share no nontrivial symmetry elements, then a plastic crystal phase exists without preferred orientations, which we call an indiscrete plastic crystal. 
    more » « less
  3. Hydrogels which morph between programmed shapes in response to aqueous stimuli are of significant interest for biosensors and artificial muscles, among other applications. However, programming hydrogel shape change at small size scales is a significant challenge. Here we use the inherent ordering capabilities of liquid crystals to create a mechanically anisotropic hydrogel; when coupled with responsive comonomers, the mechanical anisotropy in the network guides shape change in response to the desired aqueous condition. Our synthetic strategy hinges on the use of a methacrylic chromonic liquid crystal monomer which can be combined with a non-polymerizable chromonic of similar structure to vary the magnitude of shape change while retaining liquid crystalline order. This shape change is directional due to the mechanical anisotropy of the gel, which is up to 50% stiffer along the chromonic stack direction than perpendicular. Additionally, we show that the type of stimulus to which these anisotropic gels respond can be switched by incorporating responsive, hydrophilic comonomers without destroying the nematic phase or alignment. The utility of these properties is demonstrated in polymerized microstructures which exhibit Gaussian curvature in response to high pH due to emergent ordering in a micron-sized capillary. 
    more » « less
  4. Liquid crystals are known to exhibit intriguing textures and color patterns, with applications in display and optical technologies. This work focuses on chiral materials and examines the palette of morphologies that arises when microdroplets are deformed into nonspherical shapes in a controllable manner. Specifically, geometrical confinement and mechanical strain are used to manipulate orientational order, phase transitions, and topological defects that arise in chiral liquid crystal droplets. Inspired by processes encountered in nature, where insects and animals often rely on strain and temperature to alter the optical appearance of dispersed liquid crystalline elements, chiral droplets are dispersed in polymer films and deformation induced by uniaxial or biaxial stretching. Our measurements are interpreted by resorting to simulations of the corresponding systems, thereby providing an in-depth understanding of the morphologies that arise in these materials. The reported structures and assemblies offer potential for applications in smart coatings, smart fabrics, and wearable sensors. 
    more » « less
  5. Using a combination of theory and experiments we study the interface between two immiscible domains in a colloidal membrane composed of rigid rods of different lengths. Geometric considerations of rigid rod packing imply that a domain of sufficiently short rods in a background membrane of long rods is more susceptible to twist than the inverse structure, a long-rod domain in a short-rod membrane background. The tilt at the inter-domain edge forces splay, which in turn manifests as a spontaneous edge curvature whose energetics are controlled by the length asymmetry of constituent rods. A thermodynamic model of such tilt-curvature coupling at inter-domain edges explains a number of experimental observations, including a non-monotonic dependence of the edge twist on the domain radius, and annularly shaped domains of long rods. Our work shows how coupling between orientational and compositional degrees of freedom in two-dimensional fluids give rise to complex shapes and thermodynamics of domains, analogous to shape transitions in 3D fluid vesicles. 
    more » « less