skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High exposure of global tree diversity to human pressure
Safeguarding Earth’s tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species’ range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species’ range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.  more » « less
Award ID(s):
2017949
PAR ID:
10353711
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
25
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vascular plants are diverse and a major component of terrestrial ecosystems, yet their geographic distributions remain incomplete. Here, I present a global database of vascular plant distributions by integrating species distribution models calibrated to species’ dispersal ability and natural habitats to predict native range maps for 201,681 vascular plant species into unsurveyed areas. Using these maps, I uncover unique patterns of native vascular plant diversity, endemism, and phylogenetic diversity revealing hotspots in underdocumented biodiversity-rich regions. These hotspots, based on detailed species-level maps, show a pronounced latitudinal gradient, strongly supporting the theory of increasing diversity toward the equator. I trained random forest models to extrapolate diversity patterns under unbiased global sampling and identify overlaps with modeled estimations but unveiled cryptic hotspots that were not captured by modeled estimations. Only 29% to 36% of extrapolated plant hotspots are inside protected areas, leaving more than 60% outside and vulnerable. However, the unprotected hotspots harbor species with unique attributes that make them good candidates for conservation prioritization. 
    more » « less
  2. Argentina lies within the southernmost distributional range of five neotropical primates, the brown howler monkey Alouatta guariba, the black-and-gold howler monkey Alouatta caraya, the black-horned capuchin Sapajus nigritus, the Azara’s capuchin Sapajus cay, and the Azara’s owl monkey Aotus azarae; the first three of which are globally threatened. These species occupy different ecoregions: the Alto Paraná Atlantic forest, the Araucaria moist forest, the humid Chaco, the Southern Cone Mesopotamian savanna, the Paraná Ffooded savanna, and the Southern Andean Yungas. The recently approved National Primate Conservation Plan of Argentina calls for identifying priority areas to focus conservation actions for these species. We used species distribution models to estimate species ranges and then used the Zonation software to perform a spatial conservation prioritization analysis based on primate habitat quality and connectivity to identify potential areas of importance at national and ecoregional levels. Only 7.2% (19,500 km2) of the area inhabited by primates in Argentina is under protection. Outside the current protected areas, the top-ranked 1% and 5% priority areas identified in our analysis covered 1894 and 7574 km2, respectively. The top 1% areas were in the Atlantic forest of Misiones province, where S. nigritus, A. guariba, and A. caraya are distributed, and in the humid portion of eastern Chaco and Formosa provinces, where A. azarae and A. caraya are present. The top 5% areas included portions of the Yungas, where S. cay is the only primate present. Priority areas in Chaco and Formosa provinces are particularly relevant because of the paucity of protected areas and the high deforestation rate. The endangered A. guariba population will benefit from the better protection of the priority areas of Misiones. The potential priority areas proposed herein, considered within a context of a broad participatory process involving relevant stakeholders and local people, will help guide new and innovative conservation policies and practices while supporting management objectives. 
    more » « less
  3. Abstract Forests play a critical role in stabilizing Earth’s climate. Establishing protected areas (PAs) represents one approach to forest conservation, but PAs were rarely created to mitigate climate change. The global impact of PAs on the carbon cycle has not previously been quantified due to a lack of accurate global-scale carbon stock maps. Here we used ~412 million lidar samples from NASA’s GEDI mission to estimate a total PA aboveground carbon (C) stock of 61.43 Gt (+/− 0.31), 26% of all mapped terrestrial woody C. Of this total, 9.65 + /− 0.88 Gt of additional carbon was attributed to PA status. These higher C stocks are primarily from avoided emissions from deforestation and degradation in PAs compared to unprotected forests. This total is roughly equivalent to one year of annual global fossil fuel emissions. These results underscore the importance of conservation of high biomass forests for avoiding carbon emissions and preserving future sequestration. 
    more » « less
  4. null (Ed.)
    To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature’s contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions. 
    more » « less
  5. This article advances geographic scholarship about conservation and protected areas (PAs) through a focuson biocultural geographies. Biocultural geographies derive from relationships between heterogenousIndigenous stewardship practices, biological diversity, and trans-scalar multidimensional social, political, andecological processes. The concept brings together insights from political ecology and biocultural conservationto address the interplay between environmental governance, cultural change, and biodiversity. We drawfrom collaborative, transdisciplinary research with Siona, Siekopai, and Cofan Indigenous communities inthe northern Ecuadorian Amazon, a site of global importance for its biodiversity and cultural heritage. Thisis also a region of rapid and extensive social-ecological change driven by expanding agricultural frontiers,intensifying extractive industries, and new infrastructure development for regional integration. It is from thiscontext that we call for a timely and critical conversation between human–environment geographers and thefield of biocultural conservation, two approaches that have reshaped thinking about PAs and the role ofIndigenous stewardship in an era of accelerating global challenges to social-ecological well-being. Data forour analysis derive from a multiyear study that investigates strategies used to ensure social-ecological well-being in the face of change. Our findings show that Siona, Siekopai, and Cofan stewardship sustains thebiological diversity that characterizes many Amazonian PAs through locally adapted institutions based onknowledge, innovation, and practices they collectively hold. Such stewardship advances self-determinationthat challenges conventional conservation and PA models by centering Indigenous territorial governance. 
    more » « less