skip to main content


Title: Introducing the NSF-ATE InnovATEBIO National Biotechnology Education Center
Community colleges play a vital role in preparing the highly skilled technical workforce needed to support the biotechnology industry. Community colleges offer students hands-on practical experience, certificates, and technical degrees. Students include high-school graduates, individuals changing careers, college graduates, and even PhD holders. As these colleges support the many facets of the biotechnology industry, their laboratories are equipped to teach modern techniques, including DNA sequencing, mass spectrometry, microscopy, chromatography, immunoassays, and bioinformatics. Many programs are also developing education skill standards and curriculum to support the latest biotechnology manufacturing that includes CRISPR-based gene therapies, CAR-T, immuno-therapeutics, and patient derived tissues. Some programs have established contract service organizations and business incubators to catalyze regional economic development and provide internships for students entering the workforce. These college-run organizations share many similarities with ABRF core facilities. Over the last 20+ years, community college biotechnology programs have come together to share experiences and learning through the Bio-Link network. Bio-Link was funded by the NSF-ATE (National Science Foundation Advanced Technological Education) program until the fall of 2018. In the fall of 2019, InnovATEBIO, a new national center for biotechnology education, was initiated through a five-year NSF-ATE award. InnovATEBIO will build on the Bio-Link foundation to further advance connections between high schools, community colleges, and the biotechnology industry to increase the number of highly trained biotechnology technicians in the United States. InnovATEBIO will support activities designed to increase authentic research and work-based experiences and seeks to develop collaborations with ABRF members supporting course development and partner on projects that could be funded by NSF or others.  more » « less
Award ID(s):
1901984
NSF-PAR ID:
10354015
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of biomolecular techniques
Volume:
31
ISSN:
1524-0215
Page Range / eLocation ID:
29-30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less
  2. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less
  3. Too few two-year technical and community colleges pursue funding from the National Science Foundation (NSF). Instead, they tend to rely on the U.S. Department of Education or the U.S. Department of Labor for federal grants. From the way grant funding opportunities are announced, to the processes used in reviewing proposals and making funding decisions, to the policies and procedures that govern submission of proposals and implementation of grants, NSF operates differently from other federal funding agencies that make grant awards. The Advanced Technological Education (ATE) Program is unique within NSF because of its focus on two-year colleges and workforce development, specifically for those who complete for-credit programs of study and earn credentials that enable program completers to enter the skilled technical workforce. NSF expects faculty to be involved in developing proposals and implementing projects funded by the agency. Meeting this expectation requires a paradigm shift for many community and technical colleges where the primary emphasis is on teaching and where there is seldom any expectation that faculty will contribute to college efforts to secure external funding from federal sources. In addition, in 2021, the overall NSF funding rate was 26% which presents daunting odds for success. However, 10 years of research demonstrate the effectiveness of an intervention that dramatically increases the funding rate for two-year colleges seeking funding from the NSF ATE Program. Since 2012, the Mentor-Connect initiative has been funded by the NSF ATE Program to help two-year college technician educators and related STEM faculty develop the grant-writing skills needed to meet NSF expectations and benefit from ATE funding. Over the past decade, 80% of Mentor-Connect participants have successfully submitted proposals. To date, the average funding rate for these proposals is 71%. This paper describes how the Mentor-Connect intervention works and for whom, what outcomes have resulted for participants who become grantees, and how two-year colleges and technician educators can benefit. 
    more » « less
  4. The purpose of the Research in the Formation of Engineers National Science Foundation funded project, Developing Engineering Experiences and Pathways in Engineering Technology Career Formation (D.E.E.P. Engineering Technology Career Formation), is to develop a greater understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists (ET) who are prepared at two-year colleges. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. Little research on career development and the role of ET in the workforce has previously been conducted prompting national organizations such as NSF and the National Academy of Sciences to prompt more research in this area [1]. The primary objectives of this project are to: (a) identify dimensions of career orientations and anchors at various stages of professional preparation and map to ET career pathways, (b) develop an empirical framework, incorporating individual career anchors and effect of institutional culture, for understanding ET professional formation, and (c) develop and pilot interventions aimed at transforming engineering formation systems in ET contexts. The three interdisciplinary theoretical frameworks integrated to guide design and analysis of this research study are social cognitive career theory (SCCT) [2], Schein’s career anchors which focuses on individual career orientation [3], and the Hughes value framework focused on the organization [4]. SCCT which links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes ties the individual career anchors to the institutional context of the Hughes framework [2]. To date, the project has collected and analyzed quantitative data from over 330 participants who are two-year college ET students, two-year college transfer students, and early career ET professionals. Qualitative data from historical institutional documents has also been collected and analyzed. Initial analyses have revealed gaps and needed areas of support for ET students in the area of professional formation. Thus far, the identified gaps are in institutional policy (i.e. lack of articulation agreements), needed faculty professional development (i.e. two-year faculty on specific career development and professional ET formation needs and four-year faculty on unique needs of transfer students), missing curriculum and resources supporting career development and professional formation of ET students, and integration of transfer student services focusing on connecting faculty and advisors across both institutional levels and types of programs. Significant gaps in the research promoting understanding of the role of ET and unique professional formation needs of these students were also confirmed. This project has been successful at helping to broaden participation in ET engineering education through integrating new participants into activities (new four-year institutional stakeholders, new industry partners, new faculty and staff directly and indirectly working with ET students) and through promoting disciplinary (engineering education and ET) and cross disciplinary collaborations (human resource development, higher education leadership, and student affairs). With one year remaining before completion of this project, this project has promoted a better understanding of student and faculty barriers supporting career development for ET students and identified need for career development resources and curriculum in ET. Words: 498 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [3] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [4] Hughes, C. (2014, Spring). Conceptualizing the five values of people and technology development: Implications for human resource managmeent and development. Workforce Education Forum, 37(1), 23-44. 
    more » « less
  5. Background & Program Description: The link between student engagement and retention is well-established in the education literature. As a result, many colleges have developed first-year experience programs to engage students in early technical work and to promote community-building. However, many of these student success programs require participation in extracurricular activities, which require time outside of class. Yet time for extracurricular activities is a luxury that many students of low socioeconomic status (SES) cannot afford due to family or work obligations. The Scholarships in STEM (S-STEM) program, funded by the National Science Foundation, provides crucial financial support to high-achieving low-SES STEM students. The S-STEM scholarships give students the option to work less or not at all. The intended result is that students regain the time afforded to their more privileged peers, thereby also giving them the opportunity to more effectively engage with their institution, studies, and peers. The Endeavour Program is a two-year program that incorporates the S-STEM financial support into a multi-faceted and multi-college program in STEM designed to increase the level of student engagement in school. The scholars, who are recruited from three colleges, take classes together, work on hands-on team projects, attend professional and personal development events, participate in outreach events, and conduct research with faculty mentors. Over the course of the two-year program, four dimensions of student engagement (academic, behavioral, cognitive, and affective) are tracked to determine the appropriateness of using these engagement levels as predictors of success. Results: Two cohorts of 20 students were recruited in the fall of 2017 and in the fall of 2018. The first cohort completed the two-year program in the spring of 2020, and the second cohort began the second year of the program in the fall of 2020. No third cohort was recruited in 2020 due the Covid19 pandemic. The third and fourth cohorts will now enter the program in the fall of 2021 and the fall of 2022 respectively. Overall, the results of the Endeavour Program have been positive. The final retention outcome for the first cohort (the only cohort to complete the program thus far) was 85% (17/20). Retention for the second cohort is currently at 100% (20/20). Initial results show that the S-STEM scholars are performing academically as well as their peers who do not share the same risk factors. In addition, the number of completed hours is also on par with their peers. However, the most significant gains were observed in the qualitative data. Students expressed fears and anxieties about the high school to college transition and reported that the guidance provided and the community formed through the Endeavour Program alleviated many of those negative emotions. The full paper shows student engagement data obtained over time for the first and second cohorts as well as lessons learned and directions for future work. Also, examples of advising charts created in an engagement data dashboard show how the quantitative engagement data has been compiled and organized to show early warning signs for current and future cohorts. 
    more » « less