skip to main content

This content will become publicly available on February 1, 2023

Title: Hybrid Perturbations in Stacked Patch–Ring Circularly Polarized Microstrip Antennas for CubeSat Applications
A hybrid perturbation scheme is used in this article to achieve wide axial ratio (AR) bandwidth and beamwidth from circularly polarized (CP) microstrip patch–ring antennas using a single probe feed. Perturbations in the diagonal corners of a square ring and a square patch arranged in a stacked configuration are introduced to achieve the circular polarization. First, an enhanced AR bandwidth is obtained when a combination of a square ring and a square patch with negative perturbations is used as parasitic and driven elements, respectively. Next, circular polarization with wider AR bandwidth, wider beamwidth, and lower cross-polarization is obtained when a combination of a driven square patch with positive perturbation and a parasitic square ring with negative perturbations, termed as hybrid perturbations, is used. This antenna has a footprint suitable for small satellite applications (e.g., CubeSats) and its operating frequencies cover the allocated S-band downlink frequencies of NASA Deep Space Network and NASA Near Earth Network.
Award ID(s):
Publication Date:
Journal Name:
IEEE aerospace and electronic systems magazine
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a wideband circularly polarized antenna for small satellites to be used with NASA Near- Earth Networks (NEN). This single-fed stacked antenna utilizes the electromagnetic coupling concept and is usable with a duplex transceiver. The circularly-polarized antenna employs hybrid perturbations on stacked patches and covers NASA NEN’s both uplink and downlink frequencies, thus replacing the conventional requirement of two separate antennas. It provides a notable wide axial ratio (AR) < 3 dB bandwidth of 1.16 GHz from 7.02 GHz to 8.18 GHz (15.3%). The optimized patch dimensions provide 34.6% VSWR ~ 2 bandwidth from 6,525 MHz to 9,253 MHz. The overall antenna size is 17 mm × 17 mm × 6.6 mm, and has a peak gain of 7.9 dBi. This proposed antenna will overcome solar cell space constraint on smallsat’s outer wall by saving at least 50% area required by the conventional two-antenna method.
  2. This paper presents the design of a dual-band printed planar antenna for deep space CubeSat communications. The antenna system will be used with a radio for duplex operation in a CubeSat, which can be used for a lunar mission or any deep space mission. While a high-gain CubeSat planar antenna/array is always desired for a deep space mission, high-performance ground stations are also required for robust communication links. For such a mission, the X-band is the appropriate frequency for the downlink communication, which is very challenging in the case of deep space communication compared to the uplink communication. At this frequency, the antenna size can have small enough dimension to form an array to obtain high-gain directional radiations for the successful communication, including telemetry and data download. NASA’s Deep Space Network (DSN) has the largest and most sensitive 70 meterdiameter antenna that can be considered for this type of mission for reliability. DSN has uplink and downlink frequency of operations in 7.1-GHz and 8.4-GHz bands, respectively, which are separated by approximately 1.3 GHz. A straight forward approach is to use two antennas to cover uplink and downlink frequencies. However, CubeSats have huge space constraints to accommodate science instruments and othermore »subsystems and commonly utilize outside faces for solar cells. Therefore, in this paper, we have proposed a planar directional circularly polarized antenna with a single feed that operates at both uplink and downlink DSN frequencies. Simulated 3-dB axial ratio bandwidth of 165 MHz, from 7064 MHz to 7229 MHz for uplink, and that of 183 MHz, from 8325 MHz to 8508 MHz for downlink, are achieved. Also, a wide impedance bandwidth of 23.86% (VSWR < 2) is obtained. From this single probe-fed stacked patch antenna, peak RHCP gain of 9.24 dBic can be achieved.« less
  3. Statement of Purpose Hybrid nanoparticles in which a polymer is used to stabilize the secondary structure of enzyme provide a means to preserve its activity in non-native environments. This approach is illustrated here with horseradish peroxidase (HRP), an important heme enzyme used in medical diagnostic, biosensing, and biotechnological applications. Polymer chaperones in these polymer-enzyme complex (PEC) nanoparticles can enhance the utility of enzymes in unfavorable environments. Structural analysis of the PECs is a crucial link in the machine-learning driven iterative optimization cycle of polymer synthesis and testing. Here, we discuss the utility of small-angle X-ray scattering (SAXS) and quartz crystal microbalance with dissipation (QCMD) for evaluating PECs. Materials and Methods Six polymers were synthesized by automated photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization directly in 96-well plates.1 Multiple molar ratios of enzyme:polymer (1:1, 1:5, 1:10, and 1:50) were characterized. HRP was mixed with the polymer and heated to 65 °C for 1 hr to form PECs. Enzyme assay and circular dichroism measurements were performed along with SAXS and QCMD to understand polymer-protein interactions. SAXS data were obtained at NSLS-II beamline 16-ID. Results and Discussion SAXS data were analyzed to determine the radius of gyration (Rg), Porod exponent and pair distancemore »distribution functions (P(r)) (Figure 1). Rg, which corresponds to the size of the PEC nanoparticles, is sensitive to the polydispersity of the solution and does not change significantly in the presence of the polymer GEP1. Notably, the maximal dimension does not change as significantly upon heating to denaturation in the case of the PEC as it does with HRP alone. The effect of denaturation induced by heating seems to depend on the molar ratio of the polymer to enzyme. The Porod exponent, which is related to roughness, decreased from about 4 to 3 upon complexation indicating polymer binding to the enzyme’s surface. These were confirmed by modeling the structures of the HRP, the polymer and the PEC were modeled using DAMMIF/DAMMIN and MONSA (ATSAS software). The changes observed in the structure could be correlated to the measured enzymatic activity. Figure 2 shows the evolution of the PEC when the polymer is deposited onto the enzyme immobilized on Figure 1. P(r) plots for PEC vs. HRP before and after heating, illustrating the increased enzymatic stability due to polymer additives. gold-coated QCM sensors. The plots show the changes in frequency (f) and dissipation (D) with time as HRP is first deposited and is followed by the adsorption of the polymer. Large f and D show that the polymer forms a complex with HRP. Such changes were not observed with negative controls, Pluronics and poly(ethylene glycol). Comparison of the data from free particles in solution with QCM data from immobilized enzymes, shows that the conformation of the complexes in solution and surface-bound HRP could be different. This way, we were able to explore the various states of complex formation under different conditions with different polymers. Figure 2. QCMD data showing the interaction between the immobilized HRP and the polymer. 3rd and 5th harmonics are plotted (blue -f; red-D). Conclusion SAXS and QCMD data show that stabilization of the enzyme activity by inhibiting the unraveling of the secondary structure as seen in size, surface roughness, pair distribution function and percent helicity. Acknowledgment This work was supported by NSF grant 2009942. References [1] Tamasi, M, et al. Adv Intell Syst 2020, 2(2): 1900126.« less
  4. Abstract—Comparisons of outdoor Urban Microcell (UMi) large-scale path loss models, root mean square (RMS) delay spreads (DS), angular spreads (AS), and the number of spatial beams for extensive measurements performed at 28, 38, 73, and 142 GHz are presented in this letter. Measurement campaigns were conducted from 2011-2020 in downtown Austin, Texas, Manhattan (New York City), and Brooklyn, New York with communication ranges up to 930 m. Key similarities and differences in outdoor wireless channels are observed when comparing the channel statistics across a wide range of frequencies from millimeter-wave to sub-THz bands. Path loss exponents (PLEs) are remarkably similar over all measured frequencies, when referenced to the first meter free space path loss, and the RMS DS and AS decrease as frequency increases. The similar PLEs from millimeter-wave to THz frequencies imply that spacing between cellular base stations will not have to change as carrier frequencies increase towards THz, since wider bandwidth channels at sub-THz or THz carrier frequencies will cover similar distances because antenna gains increase quadratically with increasing frequency when the physical antenna area remain constant. Index Terms—5G; mmWave; 6G; THz; outdoor channel models; UMi; RMS delay and angular spread.
  5. This paper demonstrates the design and implementation of two dual-polarized ultra-wideband antennas for radar ice sounding. The first antenna operates at UHF (600– 900 MHz). The second antenna operates at VHF (140–215 MHz). Each antenna element is composed of two orthogonal octagon-shaped dipoles, two inter-locked printed circuit baluns and an impedance matching network for each polarization. We built and tested one prototype antenna for each band and showed a VSWR of less than 2:1 at both polarizations over a fractional bandwidth exceeding 40 %. Our antennas display cross-polarization isolation larger than 30 dB, an E-plane 3-dB beamwidth of 69 degrees, and a gain of at least 4 dBi with a variation of ± 1 dB across the bandwidth. We demonstrate peak power handling capabilities of 400-W and 1000-W for the UHF and VHF bands, respectively. Our design flow allows for straightforward adjustment of the antenna dimensions to meet other bandwidth constraints.