Abstract This paper introduces and evaluates a general construct for trading off accuracy and overall execution duration in classification-based machine perception problems—namely, the generalized IDK classifier cascade . The aim is to select the optimal sequence of classifiers required to minimize the expected (i.e. average) execution duration needed to achieve successful classification, subject to a constraint on quality, and optionally a latency constraint on the worst-case execution duration. An IDK classifier is a software component that attempts to categorize each input provided to it into one of a fixed set of classes, returning “I Don’t Know” (IDK) if it is unable to do so with the required level of confidence. An ensemble of several different IDK classifiers may be available for the same classification problem, offering different trade-offs between effectiveness (i.e. the probability of successful classification) and timeliness (i.e. execution duration). A model for representing such characteristics is defined, and a method is proposed for determining the values of the model parameters for a given ensemble of IDK classifiers. Optimal algorithms are developed for sequentially ordering IDK classifiers into an IDK cascade, such that the expected duration to successfully classify an input is minimized, optionally subject to a latency constraint on the worst-case overall execution duration of the IDK cascade. The entire methodology is applied to two real-world case studies. In contrast to prior work, the methodology developed in this paper caters for arbitrary dependences between the probabilities of successful classification for different IDK classifiers. Effective practical solutions are developed considering both single and multiple processors.
more »
« less
Optimally ordering IDK classifiers subject to deadlines
Abstract A classifier is a software component, often based on Deep Learning, that categorizes each input provided to it into one of a fixed set of classes. An IDK classifier may additionally output “I Don’t Know” (IDK) for certain inputs. Multiple distinct IDK classifiers may be available for the same classification problem, offering different trade-offs between effectiveness, i.e. the probability of successful classification, and efficiency, i.e. execution time. Optimal offline algorithms are proposed for sequentially ordering IDK classifiers such that the expected duration to successfully classify an input is minimized, optionally subject to a hard deadline on the maximum time permitted for classification. Solutions are provided considering independent and dependent relationships between pairs of classifiers, as well as a mix of the two.
more »
« less
- PAR ID:
- 10354275
- Date Published:
- Journal Name:
- Real-Time Systems
- ISSN:
- 0922-6443
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
AnIDK classifieris a computing component that categorizes inputs into one of a number of classes, if it is able to do so with the required level of confidence, otherwise it returns “I Don’t Know” (IDK).IDK classifier cascadeshave been proposed as a way of balancing the needs for fast response and high accuracy in classification-based machine perception. Efficient algorithms for the synthesis of IDK classifier cascades have been derived; however, the responsiveness of these cascades is highly dependent on the accuracy of predictions regarding the run-time behavior of the classifiers from which they are built. Accurate predictions of such run-time behavior is difficult to obtain for many of the classifiers used for perception. By applying thealgorithms using predictionsframework, we propose efficient algorithms for the synthesis of IDK classifier cascades that arerobustto inaccurate predictions in the following sense: the IDK classifier cascades synthesized by our algorithms have short expected execution durations when the predictions are accurate, and these expected durations increase only within specified bounds when the predictions are inaccurate.more » « less
-
Explainability helps users trust deep learning solutions for time series classification. However, existing explainability methods for multi-class time series classifiers focus on one class at a time, ignoring relationships between the classes. Instead, when a classifier is choosing between many classes, an effective explanation must show what sets the chosen class apart from the rest. We now formalize this notion, studying the open problem of class-specific explainability for deep time series classifiers, a challenging and impactful problem setting. We design a novel explainability method, DEMUX, which learns saliency maps for explaining deep multi-class time series classifiers by adaptively ensuring that its explanation spotlights the regions in an input time series that a model uses specifically to its predicted class. DEMUX adopts a gradient-based approach composed of three interdependent modules that combine to generate consistent, class-specific saliency maps that remain faithful to the classifier’s behavior yet are easily understood by end users. Our experimental study demonstrates that DEMUX outperforms nine state-of-the-art alternatives on five popular datasets when explaining two types of deep time series classifiers. Further, through a case study, we demonstrate that DEMUX’s explanations indeed highlight what separates the predicted class from the others in the eyes of the classifier.more » « less
-
Mancuso, Renato (Ed.)Deep learning–based classifiers are widely used for perception in autonomous Cyber-Physical Systems (CPS’s). However, such classifiers rarely offer guarantees of perfect accuracy while being optimized for efficiency. To support safety-critical perception, ensembles of multiple different classifiers working in concert are typically used. Since CPS’s interact with the physical world continuously, it is not unreasonable to expect dependencies among successive inputs in a stream of sensor data. Prior work introduced a classification technique that leverages these inter-input dependencies to reduce the average time to successful classification using classifier ensembles. In this paper, we propose generalizations to this classification technique, both in the improved generation of classifier cascades and the modeling of temporal dependencies. We demonstrate, through theoretical analysis and numerical evaluation, that our approach achieves further reductions in average classification latency compared to the prior methods.more » « less
-
This work investigates how different forms of input elicitation obtained from crowdsourcing can be utilized to improve the quality of inferred labels for image classification tasks, where an image must be labeled as either positive or negative depending on the presence/absence of a specified object. Five types of input elicitation methods are tested: binary classification (positive or negative); the ( x, y )-coordinate of the position participants believe a target object is located; level of confidence in binary response (on a scale from 0 to 100%); what participants believe the majority of the other participants' binary classification is; and participant's perceived difficulty level of the task (on a discrete scale). We design two crowdsourcing studies to test the performance of a variety of input elicitation methods and utilize data from over 300 participants. Various existing voting and machine learning (ML) methods are applied to make the best use of these inputs. In an effort to assess their performance on classification tasks of varying difficulty, a systematic synthetic image generation process is developed. Each generated image combines items from the MPEG-7 Core Experiment CE-Shape-1 Test Set into a single image using multiple parameters (e.g., density, transparency, etc.) and may or may not contain a target object. The difficulty of these images is validated by the performance of an automated image classification method. Experiment results suggest that more accurate results can be achieved with smaller training datasets when both the crowdsourced binary classification labels and the average of the self-reported confidence values in these labels are used as features for the ML classifiers. Moreover, when a relatively larger properly annotated dataset is available, in some cases augmenting these ML algorithms with the results (i.e., probability of outcome) from an automated classifier can achieve even higher performance than what can be obtained by using any one of the individual classifiers. Lastly, supplementary analysis of the collected data demonstrates that other performance metrics of interest, namely reduced false-negative rates, can be prioritized through special modifications of the proposed aggregation methods.more » « less
An official website of the United States government

