skip to main content


Title: Chemical Composition of an Ultrafine Sea Spray Aerosol during the Sea Spray Chemistry and Particle Evolution Experiment
Award ID(s):
1762098 1801971
NSF-PAR ID:
10354306
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ACS Earth and Space Chemistry
Volume:
6
Issue:
7
ISSN:
2472-3452
Page Range / eLocation ID:
1914 to 1923
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bubbles bursting at the ocean surface are an important source of ocean‐spray aerosol, with implications on radiative and cloud processes. Yet, very large uncertainties exist on the role of key physical controlling parameters, including wind speed, sea state and water temperature. We propose a mechanistic sea spray generation function that is based on the physics of bubble bursting. The number and mean droplet radius of jet and film drops is described by scaling laws derived from individual bubble bursting laboratory and numerical experiments, as a function of the bubble radius and the water physico‐chemical properties (viscosity, density and surface tension, all functions of temperature), with drops radii at production from 0.1 to 500 µm. Next, we integrate over the bubble size distribution entrained by breaking waves. Finally, the sea spray generation function is obtained by considering the volume flux of entrained bubbles due to breaking waves in the field constrained by the third moment of the breaking distribution (akin to the whitecap coverage). This mechanistic approach naturally integrates the role of wind and waves via the breaking distribution and entrained air flux, and a sensitivity to temperature via individual bubble bursting mechanisms. The resulting sea spray generation function has not been tuned or adjusted to match any existing data sets, in terms of magnitude of sea salt emissions and recently observed temperature dependencies. The remarkable coherence between the model and observations of sea salt emissions therefore strongly supports the mechanistic approach and the resulting sea spray generation function.

     
    more » « less
  2. Abstract

    Quantifying the influence of sea spray on air‐sea fluxes under high‐wind conditions is challenging due to a variety of factors. Among existing models, the so‐called bulk air‐sea flux model is commonly used in meteorological applications due to its simplicity, which often involves strong but untested assumptions on spray‐mediated heat fluxes and feedback effects. For example, a common assumption is to treat each droplet size as an independent contribution; that is, it does not interact with other sizes. Thus, the interactions between different size classes of spray are often neglected. In this study, we focus on the polydispersity of the spray size distribution and investigate the appropriateness of assuming an independent contribution from different spray size classes. We implement direct numerical simulations (DNS) with Lagrangian tracking of spray droplets. Based on DNS results, the bulk spray model fails to capture the interactions between different sizes that are observed directly from the droplet and feedback statistics in DNS. Thus, assuming independent contributions from spray droplets results in significant overestimates on the total heat fluxes. We further test different representative sizes of a spray size distribution. We find that the volume‐weighted representative size is capable of predicting the droplet‐modified temperature and humidity fields and generally captures the vertical profiles of spray‐mediated and interfacial heat fluxes. The results indicate that the computation of spray‐mediated fluxes can be simplified in large‐scale parameterizations.

     
    more » « less
  3. Abstract

    Accurate estimates of air‐sea enthalpy and momentum fluxes are critically important for hurricane intensity predictions. However, calculating these fluxes is challenging due to the nature of the air‐sea transition region. At extreme wind speeds, a substantial amount of sea spray is lofted making it necessary to calculate the sea spray‐mediated enthalpy and momentum fluxes. These calculations rely on microphysical equations, which are sensitive to the details of the local environmental conditions. Here we use a microphysical model to show that there exists a threshold wind speed beyond which the net sea spray‐mediated enthalpy and momentum fluxes are well‐approximated by using the net sea spray mass flux alone. This result supports the hypothesis that at extreme wind speeds, the ratio of the air‐sea exchange coefficients becomes independent of wind speed, implying the air‐sea flux calculations can be substantially simplified.

     
    more » « less
  4. Sea spray exchanging momentum, heat, and moisture is one of the major uncertainties in modeling air–sea surface heat fluxes under high wind speeds. As a result of several untested assumptions in existing models and low fidelity in the measurements, questions regarding the appropriate method for modeling the effects of spray on air–sea fluxes still exist. In this study, we implement idealized direct numerical simulations (DNS) via an Eulerian–Lagrangian model to simulate spray droplets in turbulent flows. Then, we verify the bulk spray models of Fairall et al. and Andreas et al. with the detailed physics from DNS. We find that the quality of the underlying assumptions of bulk models is sensitive to the time scales governing spray microphysics and lifetime. While both models assume that spray experiences a uniform and steady ambient condition, our results show that this assumption only works well for droplets with long thermodynamic time scales and relatively short lifetime. When the thermodynamic time scales are short, the models fail to predict the correct temperature and radius change of spray (e.g., condensation), thus spray-mediated heat fluxes, which in turn overestimates the total heat fluxes. Moreover, using our two-way coupled simulations, we find a negative feedback induced by the spray evaporation that may be missing in the bulk models, which could lead to further overestimates of the total heat flux when the spray-mediated flux is treated as an add-on to the corresponding interfacial flux. We further illustrate that the feedback effects are consistent under different flow Reynolds numbers, which suggests that the findings are relevant at practical scales.

     
    more » « less