skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Theory of Figures to the Seventh Order and the Interiors of Jupiter and Saturn
Abstract Interior modeling of Jupiter and Saturn has advanced to a state where thousands of models are generated that cover the uncertainty space of many parameters. This approach demands a fast method of computing their gravity field and shape. Moreover, the Cassini mission at Saturn and the ongoing Juno mission delivered gravitational harmonics up to J 12 . Here we report the expansion of the theory of figures, which is a fast method for gravity field and shape computation, to the seventh order (ToF7), which allows for computation of up to J 14 . We apply three different codes to compare the accuracy using polytropic models. We apply ToF7 to Jupiter and Saturn interior models in conjunction with CMS-19 H/He equation of state. For Jupiter, we find that J 6 is best matched by a transition from an He-depleted to He-enriched envelope at 2–2.5 Mbar. However, the atmospheric metallicity reaches 1 × solar only if the adiabat is perturbed toward lower densities, or if the surface temperature is enhanced by ∼14 K from the Galileo value. Our Saturn models imply a largely homogeneous-in-Z envelope at 1.5–4 × solar atop a small core. Perturbing the adiabat yields metallicity profiles with extended, heavy-element-enriched deep interior (diffuse core) out to 0.4 R Sat , as for Jupiter. Classical models with compact, dilute, or no core are possible as long as the deep interior is enriched in heavy elements. Including a thermal wind fitted to the observed wind speeds, representative Jupiter and Saturn models are consistent with all observed J n values.  more » « less
Award ID(s):
1908615
PAR ID:
10354710
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
2
Issue:
6
ISSN:
2632-3338
Page Range / eLocation ID:
241
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the relationship of zonal gravity coefficients, J 2 n , zonal winds, and axial moment of inertia (MoI) by constructing models for the interiors of giant planets. We employ the nonperturbative concentric Maclaurin spheroid method to construct both physical (realistic equation of state and barotropes) and abstract (small number of constant-density spheroids) interior models. We find that accurate gravity measurements of Jupiter’s and Saturn’s J 2 , J 4 , and J 6 by the Juno and Cassini spacecraft do not uniquely determine the MoI of either planet but do constrain it to better than 1%. Zonal winds (or differential rotation (DR)) then emerge as the leading source of uncertainty. For Saturn they are predicted to decrease the MoI by 0.4% because they reach a depth of ∼9000 km, while on Jupiter they appear to reach only ∼3000 km. We thus predict DR to affect Jupiter’s MoI by only 0.01%, too small by one order of magnitude to be detectable by the Juno spacecraft. We find that winds primarily affect the MoI indirectly via the gravity harmonic J 6 , while direct contributions are much smaller because the effects of pro- and retrograde winds cancel. DR contributes +6% and −0.8% to Saturn’s and Jupiter’s J 6 value, respectively. This changes the J 6 contribution that comes from the uniformly rotating bulk of the planet that correlates most strongly with the predicted MoI. With our physical models, we predict Jupiter’s MoI to be 0.26393 ± 0.00001. For Saturn, we predict 0.2181 ± 0.0002, assuming a rotation period of 10:33:34 hr that matches the observed polar radius. 
    more » « less
  2. Maltagliati, Luca (Ed.)
    Early in the history of the Solar System, the giant planets — including Jupiter and Saturn — migrated under gravity into different orbits around the Sun, causing an epoch of chaos and collisions. Radioactive isotopes in asteroids record the thermal imprint of these collisions, and a broad survey of meteorites now constrains the timing of the migration to approximately 11 million years after the Solar System formed. 
    more » « less
  3. Abstract Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2in such an atmosphere is through photochemical processes5,6. Here we show that the SO2distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7with NIRSpec PRISM (2.7σ)8and G395H (4.5σ)9. SO2is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations. 
    more » « less
  4. null (Ed.)
    ABSTRACT Evolved Wolf–Rayet stars form a key aspect of massive star evolution, and their strong outflows determine their final fates. In this study, we calculate grids of stellar models for a wide range of initial masses at five metallicities (ranging from solar down to just 2 per cent solar). We compare a recent hydrodynamically consistent wind prescription with two earlier frequently used wind recipes in stellar evolution and population synthesis modelling, and we present the ranges of maximum final masses at core He-exhaustion for each wind prescription and metallicity Z. Our model grids reveal qualitative differences in mass-loss behaviour of the wind prescriptions in terms of ‘convergence’. Using the prescription from Nugis & Lamers the maximum stellar black hole is found to converge to a value of 20–30 M⊙, independent of host metallicity; however, when utilizing the new physically motivated prescription from Sander & Vink there is no convergence to a maximum black hole mass value. The final mass is simply larger for larger initial He-star mass, which implies that the upper black hole limit for He-stars below the pair-instability gap is set by prior evolution with mass loss, or the pair instability itself. Quantitatively, we find the critical Z for pair-instability (ZPI) to be as high as 50 per cent Z⊙, corresponding to the host metallicity of the Large Magellanic Cloud. Moreover, while the Nugis & Lamers prescription would not predict any black holes above the approx 130 M⊙ pair-instability limit, with Sander & Vink winds included, we demonstrate a potential channel for very massive helium stars to form such massive black holes at ∼2 per cent Z⊙ or below. 
    more » « less
  5. ABSTRACT A few per cent of red giants are enriched in lithium with $$A(\mathrm{Li}) \gt 1.5$$. Their evolutionary status has remained uncertain because these Li-rich giants can be placed both on the red giant branch (RGB) near the bump luminosity and in the red clump (RC) region. However, thanks to asteroseismology, it has been found that most of them are actually RC stars. Starting at the bump luminosity, RGB progenitors of the RC stars experience extra mixing in the radiative zone separating the H-burning shell from the convective envelope followed by a series of convective He-shell flashes at the RGB tip, known as the He-core flash. The He-core flash was proposed to cause fast extra mixing in the stars at the RGB tip that is needed for the Cameron–Fowler mechanism to produce Li. We propose that the RGB stars are getting enriched in Li by the RGB extra mixing that is getting enhanced and begins to produce Li, instead of destroying it, when the stars are approaching the RGB tip. After a discussion of several mechanisms of the RGB extra mixing, including the joint operation of rotation-driven meridional circulation and turbulent diffusion, the azimuthal magnetorotational instability (AMRI), thermohaline convection, buoyancy of magnetic flux tubes, and internal gravity waves, and based on results of (magneto-) hydrodynamics simulations and asteroseismology observations, we are inclined to conclude that it is the mechanism of the AMRI or magnetically enhanced thermohaline convection, that is most likely to support our hypothesis. 
    more » « less