- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0004000001000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Lamperski, Andrew (4)
-
Lamperski, A. (1)
-
Lekang, Tyler (1)
-
Zheng, Yuping (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
Belkin, M. (1)
-
Kpotufe, S. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lamperski, Andrew (, 2022 IEEE 61st Conference on Decision and Control (CDC))
-
Lekang, Tyler; Lamperski, Andrew (, 2022 IEEE 61st Conference on Decision and Control (CDC))
-
Zheng, Yuping; Lamperski, Andrew (, Advances in neural information processing systems)
-
Lamperski, A. (, Proceedings of Thirty Fourth Conference on Learning Theory)Belkin, M.; Kpotufe, S. (Ed.)Langevin algorithms are gradient descent methods with additive noise. They have been used for decades in Markov Chain Monte Carlo (MCMC) sampling, optimization, and learning. Their convergence properties for unconstrained non-convex optimization and learning problems have been studied widely in the last few years. Other work has examined projected Langevin algorithms for sampling from log-concave distributions restricted to convex compact sets. For learning and optimization, log-concave distributions correspond to convex losses. In this paper, we analyze the case of non-convex losses with compact convex constraint sets and IID external data variables. We term the resulting method the projected stochastic gradient Langevin algorithm (PSGLA). We show the algorithm achieves a deviation of 𝑂(𝑇−1/4(𝑙𝑜𝑔𝑇)1/2) from its target distribution in 1-Wasserstein distance. For optimization and learning, we show that the algorithm achieves 𝜖-suboptimal solutions, on average, provided that it is run for a time that is polynomial in 𝜖 and slightly super-exponential in the problem dimension.more » « less