skip to main content


Title: The future of work and wellbeing: A preliminary report from a series of conversations
What is the future of work and wellbeing? How did the COVID-19 crisis affect this future? What can, and what should, researchers and practitioners in the field of human-computer interaction do, as they develop interfaces for work and wellbeing? These are the questions that we explore in a weekly online series of conversations with HCI experts. In this paper we share some of the insights from our first nine conversations of the series.  more » « less
Award ID(s):
1839484
NSF-PAR ID:
10354856
Author(s) / Creator(s):
Date Published:
Journal Name:
New Future of Work Microsoft Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. What is the future of work and wellbeing? How did the COVID-19 crisis affect this future? What can, and what should, researchers and practitioners in the field of human-computer interaction do, as they develop interfaces for work and wellbeing? These are the questions that we explore in a weekly online series of conversations with HCI experts. In this paper we share some of the insights from our first nine conversations of the series. 
    more » « less
  2. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  3. null (Ed.)
    High school counselors play a pivotal role in students’ educational pathways to STEM careers. Guidance provided by these school officials can have a measurable influence on student education and career choices. . School counselors play a critical role in student selection of elective courses, achievement, and fostering an environment through outreach activities. Each of these factors can influence students’ career interests, college choice, and major selection. This is one reason for why it is important to begin planning and having conversations around pursuing an engineering degree in high school to combat the lack of diversity in engineering rooted within the primary and secondary education systems. Recognizing school counselors as an untapped resource and equipping them with the knowledge and resources they need to inform students about engineering will allow them to increase students' motivations and capacities to pursue careers in engineering, especially for historically underrepresented minorities. Such capacity building of school counselors will inherently improve the diversity of our nation's engineering workforce. This research study details the development and evaluation of a professional development (PD) program for high school guidance counselors. The PD was situated within the context of a national high school engineering initiative aimed at demystifying the engineering experience through inclusive, secondary-level engineering curricula. The counselor PD was conducted virtually over the summer of 2020. In total, 15 counselors completed the six-week PD -. Counselors participated in a series of engineering design activities to learn more about the engineering process. They also attended information sessions about engineering stereotypes, stereotype threats, implicit biases, and different disciplines within engineering to better inform their students of future career options. This paper details the development and program structure of the counselor PD. Pre- and post-focus groups were used to gain insight into counselors’ perceptions of engineering. Post-surveys were also collected to determine what counselors thought about the PD. We will provide detail regarding shifts in perceptions of engineering and overall evaluation of the PD. We conclude with a discussion of key takeaways and lessons learned. 
    more » « less
  4. Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week- long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education. These activities not only engage teachers in conversations with peers and colleagues in a professional development setting but also enable teachers to reflect on their learning related to STEM education in the context of creating lesson plans and considering future teaching. In addition to describing these activities, we share suggestions related to how these activities may be used in venues outside of professional development. 
    more » « less
  5. Background. While educational change often involves bold talk about disruptive ideas that eventually need to be institutionalized, a critical but often less visible element of sustaining change is work such as maintaining a shared vision, onboarding new people, negotiating small issues in light of department culture, and coordinating big changes with existing efforts. While knowledge about these forms of invisible work exist in other disciplines, these issues seem understudied in engineering education. This work approaches this issue of invisible knowledge with a design orientation, and specifically draws on the field of design-based research. Increasingly, design is recognized as a knowledge producing activity, resulting in insights into generative ways of defining problems, frameworks for generating solutions to problems, examples of what it looks like to connect theory to specific problems. Purpose: As a design effort, this work asks: How might a specific department create a sustainable practice to support the invisible work of coordinating and sustaining change? As a scholarly effort, this instance of design can result in a culminating problem definition, a solution framework, and examples of theory use that represent knowledge contributions. Approach: A mechanical engineering department in a small, private educational institution worked for four months to develop a sustainable practice to support invisible work of coordinating and sustaining change. Following an initial commitment of 60 minutes once every three weeks and 3-hour retreat to explore possibilities, the department then iteratively designed and then carried out sample conversations. Each iteration involved specifying the goals of the conversation, how to have the conversation (the design) and the rationale for connecting the design to the goals. Traces from the process represent the data for this work. Results. Over time, the conversations came to be designed along four dimensions: topic, time allocation, turn-taking, and traces. We have learned that topics that are of immediate relevance to everyone are particularly powerful (initial topics included "being back on campus" and "navigating in-person"). We are currently leveraging a time allocation that devotes the most time to hearing from each participant on the topic, then time for the group to cautiously explore synthesis, and finally time for the group to weigh in on future conversation topics. Approaches to turn-taking have involved decentralization (e.g., each current speaker invites the next speaker) and respect (speakers have a chance to "pass" and then choose the next speaker). Finally, we are experimenting with how to balance the creation of traces as a natural part of the process, such as through real-time transcription in the chat feature of zoom. Undergirding each of these dimensions are connections to the intended goals, connections to relevant theory, and connections to the long-term goal of sustainability. In presenting these ideas, we will focus on how the information being offered connects to the current body of knowledge in engineering education. Conclusion. It is promising to treat the work of department culture as a design problem. The ideas in this framework may serve as inspiration to others seeking to create their own sustainable mechanisms but with different conditions. During the winter and spring of 2022, the approach will be additionally tested via six deployments, and insights will be shared in subsequent publications. 
    more » « less