A major challenge in designing conversational agents is to handle unknown concepts in user utterances. This is particularly difficult for general-purpose task-oriented agents, as the unknown concepts and the tasks can be outside of the agent’s existing domain of knowledge. In this work, we propose a new multi-modal mixed-initiative approach towards this problem. Our agent Pumice guides the user to recursively explain unknown concepts through conversations, and to ground these concepts by demonstrating on the graphical user interfaces (GUIs) of existing third-party mobile apps. Pumice also supports the generalization of learned concepts to other different contexts and task domains.
more »
« less
Hey Google, Do You Have a Personality? Designing Personality and Personas for Conversational Agents
Conversational agents designed to interact through natural language are often imbued with human-like personalities. At times, the agent might also have a distinct persona with traits such as gender, age, or a backstory. Designing such personality or persona for conversational agents has become a common design practice. In this work, we review the emerging literature on designing agent persona or personality, and reflect on these approaches, along with the personas that are created for common conversational agents. We discuss open questions with regards to three aspects: meeting user needs, the ethics of deception, and reinforcing social stereotypes through conversational agents. We hope this work can provoke researchers and practitioners to critically reflect on their approach for designing personality or persona of conversational agents.
more »
« less
- PAR ID:
- 10354963
- Date Published:
- Journal Name:
- CUI 2021 - 3rd Conference on Conversational User Interfaces
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As human-robot interactions become more social, a robot's personality plays an increasingly vital role in shaping user experience and its overall effectiveness. In this study, we examine the impact of three distinct robot personalities on user experiences during well-being exercises: a Baseline Personality that aligns with user expectations, a High Extraversion Personality, and a High Neuroticism Personality. These personalities were manifested through the robot's dialogue, which were generated using a large language model (LLM) guided by key behavioral characteristics from the Big 5 personality traits. In a between-subjects user study (N = 66), where each participant interacted with one distinct robot personality, we found that both the High Extraversion and High Neuroticism Robot Personalities significantly enhanced participants' emotional states (arousal, control, and valence). The High Extraversion Robot Personality was also rated as the most enjoyable to interact with. Additionally, evidence suggested that participants' personality traits moderated the effectiveness of specific robot personalities in eliciting positive outcomes from well-being exercises. Our findings highlight the potential benefits of designing robot personalities that deviate from users' expectations, thereby enriching human-robot interactions.more » « less
-
This research paper delves into the evolving landscape of fine-tuning large language models (LLMs) to align with human users, extending beyond basic alignment to propose "personality alignment" for language models in organizational settings. Acknowledging the impact of training methods on the formation of undefined personality traits in AI models, the study draws parallels with human fitting processes using personality tests. Through an original case study, we demonstrate the necessity of personality fine-tuning for AIs and raise intriguing questions about applying human-designed tests to AIs, engineering specialized AI personality tests, and shaping AI personalities to suit organizational roles. The paper serves as a starting point for discussions and developments in the burgeoning field of AI personality alignment, offering a foundational anchor for future exploration in human-machine teaming and co-existence.more » « less
-
null (Ed.)This work investigates how social agents can be designed to create a sense of ownership over them within a group of users. Social agents, such as conversational agents and chatbots, currently interact with people in impersonal, isolated, and often one-on-one interactions: one user and one agent. This is likely to change as agents become more socially sophisticated and integrated in social fabrics. Previous research has indicated that understanding who owns an agent can assist in creating expectations and understanding who an agent is accountable to within a group. We present findings from a three week case-study in which we implemented a chatbot that was successful in creating a sense of collective ownership within a community. We discuss the design choices that led to this outcome and implications for social agent design.more » « less
-
It has long been observed that humans in interaction tend to adapt their behavior to become more similar to their interlocutors. Yet the reasons why such entrainment arises in some conversations and not others remain poorly understood. Early work suggests an influence of different personality traits on the degree of entrainment speakers engage in. However, some of these results have never been replicated to test their generalizability. Moreover, a recent finding draws into question whether these and other effects are strong enough to create differences between speakers that persist across multiple conversations. We investigate a variety of personality traits for their influence on a local form of acoustic-prosodic entrainment in two kinds of spontaneous conversation. To our knowledge, this is the first attempt to detect such effects across several interactions per subject and the first attempt to replicate some influential early work in a more natural context. We find virtually no impact of personality, suggesting that prior results might not generalize to a more natural context or entrainment on other linguistic variables.more » « less
An official website of the United States government

