skip to main content


Title: A review of the potential impacts of commercial inshore pink shrimp fisheries on the recreational flats fishery in Biscayne Bay, FL, USA
The recreational flats fishery (bonefish, tarpon, and permit) in South Florida is economically and culturally important and has declined recently for unknown reasons. Biscayne Bay is a shallow subtropical lagoon system with a flats fishery bordered by a large urban center. The Bay also supports commercial fisheries, including the pink shrimp bait and food fisheries. These two shrimp fisheries represent Biscayne Bay’s most valuable fisheries, but how these fisheries interact with the recreational flats fishery is relatively unknown. We conducted a literature review to identify the potential direct and indirect effects of the two shrimp fisheries on the recreational flats fishery in the Bay. Our review found that there are likely minimal impacts of the Biscayne Bay pink shrimp fisheries on the flats fishery in Biscayne Bay since (a) the species are not caught by shrimping gear, (b) the shrimp fishery removes less than 10% of the Bay’s shrimp population, and (c) damage to seagrass is minimal (but hardbottom is damaged). Yet, the potential for indirect prey removal cannot be ruled out and requires quantification with additional diet data, food web, and mass balance models.  more » « less
Award ID(s):
2025954
NSF-PAR ID:
10355028
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Environmental Biology of Fishes
ISSN:
0378-1909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pink shrimp (Farfantepenaeus duorarum) are an economically important species in Biscayne Bay, FL, and support both food and bait commercial fisheries. Pink shrimp are also an important food resource for higher trophic level finfish species. This includes those fishes that support Florida’s iconic and highly valued recreational flats fisheries—which have experienced a severe decline in recent decades and may be impacted by the pink shrimp fisheries. Despite their economic and ecological importance, few studies have evaluated the long-term trends in Biscayne Bay’s pink shrimp fisheries. In this study, we evaluated over 30 years (1987–2020) of fisheries-dependent and economic data on the pink shrimp bait and food fisheries in Biscayne Bay with segmented regression to identify trends and potential breakpoints. We also evaluate trends in Biscayne Bay bonefish (Albula vulpes) over 25 years (1993–2018), based on recreational angler interview data, and assess potential interactions with the shrimp fisheries. We found that landings, value, effort, and participation (number of vessels and dealers) in both Biscayne Bay pink shrimp fisheries have exhibited declines from peaks in the late 1990s. No significant trends were detected in annual bonefish catch or catch per unit effort (catch/trip), but fishing effort declined over the time series. We did not find a significant relationship between annual bonefish catch per unit effort and commercial shrimp fishing landings or effort, suggesting that the pink shrimp fisheries are not a primary factor contributing to declines in the Biscayne Bay bonefish fishery. 
    more » « less
  2. Abstract

    Recreational fisheries are culturally and economically important around the world. Recent research emphasizes that understanding and managing these systems requires a social–ecological perspective. We systematically reviewed quantitative social–ecological models of marine and freshwater recreational fisheries to summarize their conceptualization of social, ecological, and social–ecological dynamics and identify research frontiers. From a candidate set of 626 studies published between 1975 and 2018, 49 met criteria for inclusion in our review. These studies, though diverse in terms of focal species and processes considered, were geographically limited to a few locations and ignored large regions of the globe where recreational fishing is important. There were also important gaps in the social and ecological processes that were included in published models. Reflecting on these patterns in the context of previous conceptual frameworks, we define five key frontiers for future work: 1) exploring the implications of social and behavioural processes like heuristics, social norms, and information sharing for angler decisions and fishery dynamics; 2) modelling governance with more realistic complexity; 3) incorporating ideas from resilience thinking and complex adaptive systems, including slow variables, destabilizing feedbacks, surprises and diversity; 4) considering key ideas in fisheries systems, including spatial and temporal effort dynamics, catch hyperstability, and stocking; and 5) thinking synthetically about the models that we use to describe social–ecological dynamics in recreational fisheries, via explicit comparisons and formal integration with data. Exploration of these frontiers, while remembering the distinction between model complexity and model usefulness, will improve our ability to understand and sustain recreational fisheries.

     
    more » « less
  3. null (Ed.)
    Narragansett Bay (Rhode Island, USA) is an estuary undergoing changes from a combination of rising water temperatures, nutrient fluxes, and human uses. In this study, we created an ecosystem food web model and evaluated its ability to predict functional group biomasses. Specifically, we used Ecopath to construct 2 mass-balanced models covering different time periods in Narragansett Bay: a historical model using data from 1994-1998 and a present-day model that represents 2014-2018. With the historical model as a starting point, we used Ecosim fit to time series data and projected forward to present-day values, forcing the model with both phytoplankton biomass and fishing mortality. The biomass of most mid- and upper trophic level groups increased by 2018, with the exception of carnivorous benthos, which experienced a large decline. There were changes in the composition of fisheries, with a large increase in recreational benthivorous fish landings and a decrease in commercial landings of planktivorous fish and suspension feeding benthos. The inclusion of fishing mortality and phytoplankton biomass as forcing functions, as well as adjusting the vulnerability levels of prey, greatly improved our model fits for all functional groups with the exception of gelatinous zooplankton. Our ecosystem model was able to correctly predict the direction of change for all fish and fished invertebrate groups with a relatively high degree of precision, particularly for the upper trophic levels. Thus, this ecosystem model is broadly applicable and suitable to project trends in the Narragansett Bay food web associated with localized and adaptive ecosystem-based management. 
    more » « less
  4. Abstract

    The 2010Deepwater Horizon(DwH) disaster challenged the integrity of the Gulf of Mexico (GOM) large‐marine ecosystem at unprecedented scales, prompting concerns of devastating injury for GOM fisheries in the post‐spill decade. Following the catastrophe, projected economic losses for regional commercial, recreational, and mariculture sectors for the decade after oiling were US$3.7–8.7 billion overall, owing to the vulnerability of economically prized, primarily nearshore taxa that support fishing communities. State and federal fisheries data during 2000–2017 indicated that GOM fishery sectors appeared to serve as remarkable anchors of resilience following the largest accidental marine oil spill in human history. Evidence of post‐disaster impacts on fisheries economies was negligible. Rather, GOM commercial sales during 2010–2017 were US$0.8–1.5 billion above forecasts derived using pre‐spill (2000–2009) trajectories, while pre‐ and post‐spill recreational fishery trends did not differ appreciably. No post‐spill shifts in target species or effort distribution across states were apparent to explain these findings. Unraveling the mechanisms for this unforeseen stability represents an important avenue for understanding the vulnerability or resilience of human–natural systems to future disturbances. FollowingDwH, the causes for fishery responses are likely multifaceted and complex (including exogenous economic forces that typically affect fisheries‐dependent data), but appear partially explained by the relative ecological stability of coastal fishery assemblages despite widespread oiling, which has been corroborated by multiple fishery‐independent surveys across the northern GOM. Additionally, we hypothesize that damage payments to fishermen led to acquisition or retooling of commercial fisheries infrastructure, and subsequent rises in harvest effort. Combined, these social–ecological dynamics likely aided recovery of stressed coastal GOM communities in the years afterDwH, although increased fishing pressure in the post‐spill era may have consequences for future GOM ecosystem structure, function, and resilience.

     
    more » « less
  5. Abstract Background

    Atlantic tarpon (Megalops atlanticus) are a highly migratory species ranging along continental and insular coastlines of the Atlantic Ocean. Due to their importance to regional recreational and sport fisheries, research has been focused on large-scale movement patterns of reproductively active adults in areas where they are of high economic value. As a consequence, geographically restricted focus on adults has left significant gaps in our understanding of tarpon biology and their movements, especially for juveniles in remote locations where they are common. Our study focused on small-scale patterns of movement and habitat use of juvenile tarpon using acoustic telemetry in a small bay in St. Thomas, US Virgin Islands.

    Results

    Four juvenile tarpon (80–95 cm FL) were tracked from September 2015 to February 2018, while an additional eight juveniles (61–94 cm FL) left the study area within 2 days after tagging and were not included in analysis. Four tarpon had > 78% residency and average activity space of 0.76 km2(range 0.08–1.17 km2) within Brewers Bay (1.8 km2). Their vertical distribution was < 18 m depth with occasional movements to deeper water. Activity was greater during day compared to night, with peaks during crepuscular periods. During the day tarpon used different parts of the bay with consistent overlap around the St. Thomas airport runway and at night tarpon typically remained in a small shallow lagoon. However, when temperatures in the lagoon exceeded 30 °C, tarpon moved to cooler, deeper waters outside the lagoon.

    Conclusion

    Our results, although limited to only four individuals, provide new baseline data on the movement ecology of juvenile Atlantic tarpon. We showed that juvenile tarpon had high residency within a small bay and relatively stable non-overlapping daytime home ranges, except when seasonally abundant food sources were present. Fine-scale acoustic tracking showed the effects of environmental conditions (i.e., elevated seawater temperature) on tarpon movement and habitat use. These observations highlight the need for more extensive studies of juvenile tarpon across a broader range of their distribution, and compare the similarities and differences in behavior among various size classes of individuals from small juveniles to reproductively mature adults.

     
    more » « less