skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities
Despite efforts to attract and retain more students in engineering and computer science — particularly women and students from underrepresented groups — diversity within these educational programs and the technical workforce remains stubbornly low. Research shows that undergraduate retention, persistence, and success in college is affected by several factors, including sense of belonging, task value, positive student-faculty interactions, school connectedness, and student engagement [1], [2]. Kuh [1] found that improvement in persistence, performance, and graduation for students in college were correlated to students’ level of participation in particular activities known as high impact educational practices (HIEP). HIEP include, among others, culminating experiences, learning communities, service learning, study abroad, and undergraduate research; Kuh [1] concluded that these activities may be effective at promoting overall student success. Kuh [1] and others [3] further hypothesized that participation in HIEP may especially benefit students from non-majority groups. Whether and how engineering and computer science students benefit from participating in HIEP and whether students from non-majority groups have access to HIEP activities, however, remain as questions to investigate. In this project, we examine engineering and computer science student participation in HIEP at two public land grant institutions. In this study, we seek to understand how and why students participate in HIEP and how participation affects their persistence and success in engineering and computer science majors. Set within the rural, public land grant university context, this study conceptualizes diversity in a broad sense and includes women, members of underrepresented racial and ethnic groups, first generation college students, adult learners, and nontraditional student as groups contributing to the diversity of academic programs and the technical workforce.  more » « less
Award ID(s):
1927218
NSF-PAR ID:
10355058
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affect E/CS student awareness of, interest in, and participation in HIP? During Project Year 1, a survey driven quantitative study was conducted. A survey informed by results of the National Survey of Student Engagement (NSSE) from each institution was developed and deployed. Survey respondents (N = 531) were students enrolled in undergraduate E/CS programs at either institution. Frequency distribution analyses were conducted to assess the respondents’ level of participation in extracurricular HIPs (i.e., global learning and study aboard, internships, learning communities, service and community-based learning, and undergraduate research) that have been shown in the literature to positively impact undergraduate student success. Further statistical analysis was conducted to understand the effects of HIP participation, coursework enjoyability, and confidence at completing a degree on the academic success of underrepresented and nontraditional E/CS students. Exploratory factor analysis was used to derive an "academic success" variable from five items that sought to measure how students persevere to attain academic goals. Results showed that a linear relationship in the target population exists and that the resultant multiple regression model is a good fit for the data. During the Project Year 2, survey results were used to develop focus group interview protocols and guide the purposive selection of focus group participants. Focus group interviews were conducted with a total of 27 undergraduates (12 males, 15 females, 16 engineering students, 11 computer science students) across both institutions via video conferencing (i.e., ZOOM) during the spring and fall 2021 semesters. Currently, verified focus group transcripts are being systematically analyzed and coded by a team of four trained coders to identify themes and answer the research questions. This paper will provide an overview of the preliminary themes so far identified. Future project activities during Project Year 3 will focus on refining themes identified during the focus group transcript analysis. Survey and focus group data will then be combined to develop deeper understandings of why and how E/CS students participate in the HIP at their university, taking into account the institutional and programmatic contexts at each institution. Ultimately, the project will develop and disseminate recommendations for improving diverse E/CS student awareness of, interest in, and participation in HIP, at similar land grant institutions nationally. 
    more » « less
  2. Over the years, researchers have found that student engagement facilitates desired academic success outcomes for college undergraduate students. Much research on student engagement has focused on academic tasks and classroom context. High impact engagement practices (HIEP) have been shown to be effective for undergraduate student academic success. However, less is known about the effects of HIEP specifically on engineering and computer science (E/CS) student outcomes. Given the high attrition rates for E/CS students, student involvement in HIEP could be effective in improving student outcomes for E/CS students, including those from various underrepresented groups. More generally, student participation in specific HIEP activities has been shown to shape their everyday experiences in school, both academically and socially. Hence, the primary goal of this study is to examine the factors that predict academic success in E/CS using multiple regression analysis. Specifically, this study seeks to understand the effects of high impact engagement practices (HIEP), coursework enjoyability, confidence at completing a degree on academic success of the underrepresented and nontraditional E/CS students. We used exploratory factor analyses to derive “academic success” variable from five items that sought to measure how students persevere to attain academic goals. A secondary goal of the present study is to address the gap in research literature concerning how participation in HIEP affects student persistence and success in E/CS degree programs. Our research team developed and administered an online survey to investigate and identify factors that affect participation in HIEP among underrepresented and nontraditional E/CS students. Respondents (N = 531) were students enrolled in two land grant universities in the Western U.S. Multiple regression analyses were conducted to examine the proportion of the variation in the dependent variable (academic success) explained by the independent variables (i.e., high impact engagement practice (HIEP), coursework enjoyability, and confidence at completing a degree). We hypothesized that (1) high impact engagement practices will predict academic success; (2) coursework enjoyability will predict academic success; and (3) confidence at completing a degree will predict academic success. Results showed that the multiple regression model statistically predicted academic success , F(3, 270) = 33.064, p = .001, adjusted R2 = .27. This results indicate that there is a linear relationship in the population and the multiple regression model is a good fit for the data. Further, findings show that confidence at completing a degree is significantly predictive of academic success. In addition, coursework enjoyability is a strong predictor of academic success. Specifically, the result shows that an increase in high impact engagement activity is associated with an increase in students’ academic success. In sum, these findings suggest that student participation in High Impact Engagement Practices might improve academic success and course retention. Theoretical and practical implications are discussed. 
    more » « less
  3. Recognizing a national and regional need for a highly trained engineering technology STEM workforce with baccalaureate degrees, the Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and an ecosystem of high-impact curricular and co-curricular activities to increase the success of academically talented students. A total of 12 first-time students will be supported for four years and 36 students transferring from community colleges will be supported for two years. The goals of the project are to (1) increase the number and diversity of students pursuing degrees in engineering technology (first-generation, underrepresented students, women, and veterans); (2) add to the body of knowledge regarding best practices in Engineering Technology and promote employment; and (3) contribute to the literature on self-efficacy. The project brings together engineering technology academic programs that are offered through the School of Technology and programs in the Honors College, an inclusive and unique college designed around high-impact educational practices. The project provides a unique opportunity to engage academically talented engineering technology students in activities designed to foster leadership, technical know-how, and employability skills for technology fields that actively recruit and employ graduates from diverse backgrounds and communities. By focusing on a broad range of students, the project will investigate the relationship between student characteristics and student success through (1) a mixed methods pre/post research design that examines differences in motivation, self-efficacy and professional skills and (2) a matched cohort comparison study of transfer students that examines participation/non-participation in engineering technology programs of study with honors’ college elective programming. The paper will address first year project activities including the ETS-IMPRESS recruitment, and advertisement plan to recruit first-year and community college transfer students. The paper will address the student eligibility and selection process, the recruitment of the first cohort scholars, and finally the orientation program including the summer bridge undergraduate research experience. 
    more » « less
  4. Student engagement, especially among Engineering and Computer science majors (E/CS), has been a priority for researchers. Although considerable efforts have been made to improve college students' engagement and interest, underrepresented minority groups and first-generation students are still at risk of dropping out of engineering majors due to lack of inclusiveness, motivation, and other related factors. According to Kuh (2008), student participation in High-Impact Educational Practices (HIEP) is correlated with student outcomes such as persistence, performance, achievement, and intent to complete their current major. The present study reviews the existing National Survey of Student Engagement (NSSE, 2012, 2017) data from two western land-grant universities to fully capture participation through the survey of first-year students and seniors (N = 674). The HIEP considered include service-learning, learning communities, research with faculty, internship or field experience, study abroad, and culminating senior experience. These practices are designed to encourage meaningful interactions between faculty and students, foster collaboration with students within different demographics groups, and facilitate learning outside the classroom. Insights were gleaned from how the students interacted with HIEP based on special characteristics such as sex, race, age, enrollment status, and residence. The purpose of the present study is to examine the extent to which E/CS students participate in HIEP and its effects on student outcomes. This study also offers comparisons or possible relationships between student demographics, student success, and HIEP involvement. For example, the participation rates of HIEP on different engineering and computer science majors, including civil, chemical, electrical, mechanical, and materials engineering, etc., are analyzed to examine the practices that work for a particular E/CS major. The present study reports findings from NSSE 2012 and 2017 surveys. Results show that among the E/CS seniors, service-learning, learning community, and study abroad program are the HIEP with the lowest participation rate with 41% (service-learning), 59% (learning community), and 68% (study abroad program), indicating that they do not plan to engage in these practices in their senior year. Conversely, internships and culminating senior experiences had the most participation among E/CS seniors with 52% (internships) and 68% (culminating senior experiences. Interestingly, first-year students showed a significant interest to participate in the following HIEP: internships, study abroad programs, and culminating senior experiences – with 76% (internships), 47% (study abroad program), and 68% (culminating senior experiences) indicating plans to engage in these practices. Finally, findings show that participation or engagement in HIEP is a significant predictor of student learning outcomes. Findings of this review may serve as a guide for future research in E/CS student participation in HIEP. The paper concludes with theoretical and practical implications of the findings on student engagement and learning. Key words: NSSE, high impact educational practices, Engagement 
    more » « less
  5. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees. 
    more » « less