skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities
Despite efforts to attract and retain more students in engineering and computer science — particularly women and students from underrepresented groups — diversity within these educational programs and the technical workforce remains stubbornly low. Research shows that undergraduate retention, persistence, and success in college is affected by several factors, including sense of belonging, task value, positive student-faculty interactions, school connectedness, and student engagement [1], [2]. Kuh [1] found that improvement in persistence, performance, and graduation for students in college were correlated to students’ level of participation in particular activities known as high impact educational practices (HIEP). HIEP include, among others, culminating experiences, learning communities, service learning, study abroad, and undergraduate research; Kuh [1] concluded that these activities may be effective at promoting overall student success. Kuh [1] and others [3] further hypothesized that participation in HIEP may especially benefit students from non-majority groups. Whether and how engineering and computer science students benefit from participating in HIEP and whether students from non-majority groups have access to HIEP activities, however, remain as questions to investigate. In this project, we examine engineering and computer science student participation in HIEP at two public land grant institutions. In this study, we seek to understand how and why students participate in HIEP and how participation affects their persistence and success in engineering and computer science majors. Set within the rural, public land grant university context, this study conceptualizes diversity in a broad sense and includes women, members of underrepresented racial and ethnic groups, first generation college students, adult learners, and nontraditional student as groups contributing to the diversity of academic programs and the technical workforce.  more » « less
Award ID(s):
1927218
PAR ID:
10355058
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affect E/CS student awareness of, interest in, and participation in HIP? During Project Year 1, a survey driven quantitative study was conducted. A survey informed by results of the National Survey of Student Engagement (NSSE) from each institution was developed and deployed. Survey respondents (N = 531) were students enrolled in undergraduate E/CS programs at either institution. Frequency distribution analyses were conducted to assess the respondents’ level of participation in extracurricular HIPs (i.e., global learning and study aboard, internships, learning communities, service and community-based learning, and undergraduate research) that have been shown in the literature to positively impact undergraduate student success. Further statistical analysis was conducted to understand the effects of HIP participation, coursework enjoyability, and confidence at completing a degree on the academic success of underrepresented and nontraditional E/CS students. Exploratory factor analysis was used to derive an "academic success" variable from five items that sought to measure how students persevere to attain academic goals. Results showed that a linear relationship in the target population exists and that the resultant multiple regression model is a good fit for the data. During the Project Year 2, survey results were used to develop focus group interview protocols and guide the purposive selection of focus group participants. Focus group interviews were conducted with a total of 27 undergraduates (12 males, 15 females, 16 engineering students, 11 computer science students) across both institutions via video conferencing (i.e., ZOOM) during the spring and fall 2021 semesters. Currently, verified focus group transcripts are being systematically analyzed and coded by a team of four trained coders to identify themes and answer the research questions. This paper will provide an overview of the preliminary themes so far identified. Future project activities during Project Year 3 will focus on refining themes identified during the focus group transcript analysis. Survey and focus group data will then be combined to develop deeper understandings of why and how E/CS students participate in the HIP at their university, taking into account the institutional and programmatic contexts at each institution. Ultimately, the project will develop and disseminate recommendations for improving diverse E/CS student awareness of, interest in, and participation in HIP, at similar land grant institutions nationally. 
    more » « less
  2. Recognizing a national and regional need for a highly trained engineering technology STEM workforce with baccalaureate degrees, the Engineering Technology Scholars – IMProving Retention and Student Success (ETS-IMPRESS) project provides financial support and an ecosystem of high-impact curricular and co-curricular activities to increase the success of academically talented students. A total of 12 first-time students will be supported for four years and 36 students transferring from community colleges will be supported for two years. The goals of the project are to (1) increase the number and diversity of students pursuing degrees in engineering technology (first-generation, underrepresented students, women, and veterans); (2) add to the body of knowledge regarding best practices in Engineering Technology and promote employment; and (3) contribute to the literature on self-efficacy. The project brings together engineering technology academic programs that are offered through the School of Technology and programs in the Honors College, an inclusive and unique college designed around high-impact educational practices. The project provides a unique opportunity to engage academically talented engineering technology students in activities designed to foster leadership, technical know-how, and employability skills for technology fields that actively recruit and employ graduates from diverse backgrounds and communities. By focusing on a broad range of students, the project will investigate the relationship between student characteristics and student success through (1) a mixed methods pre/post research design that examines differences in motivation, self-efficacy and professional skills and (2) a matched cohort comparison study of transfer students that examines participation/non-participation in engineering technology programs of study with honors’ college elective programming. The paper will address first year project activities including the ETS-IMPRESS recruitment, and advertisement plan to recruit first-year and community college transfer students. The paper will address the student eligibility and selection process, the recruitment of the first cohort scholars, and finally the orientation program including the summer bridge undergraduate research experience. 
    more » « less
  3. With college advisory boards and potential employers consistently voicing their desire for engineers and scientists who can communicate well, work effectively in teams, and independently problem-solve, the Colleges of Engineering & Computer Science (ECS) and Natural Sciences and Mathematics (NSM) at Sacramento State University, a large, public, primarily undergraduate institution, have deployed two programs to explicitly address these skills for undergraduate science, technology, engineering, and mathematics (STEM) students. The goals of the NSF-funded Achieving STEM Persistence through Peer-Assisted Learning and Leadership Development (ASPIRE) project are to increase retention and decrease time to graduation for STEM students, as well as increase retention of women and underrepresented minorities (URM) in the STEM workforce by implementing evidence-based practices to promote student success during two critical transitions: 1) from lower-division to upper-division coursework in engineering; and 2) from upper-division coursework to an entry-level STEM career. ASPIRE aims to achieve these goals by: 1) adapting and implementing the NSM Peer Assisted Learning (PAL) program in gateway engineering courses; and 2) developing the Hornet Leadership Program which includes scaffolded opportunities for students to explore their leadership capacity and develop leadership skills. The main research questions for this study include: (1) Will the ECS PAL model and Hornet Leadership Program result in increased persistence and workforce readiness in STEM majors at a large, diverse university? (2) What attitude changes will this project have on students and faculty and the relationships between them? The first question is addressed through pre- and post-implementation student surveys and student course/GPA data. The second question is addressed through faculty surveys, faculty focus groups/interviews, and pre- and post-data from a faculty professional development workshop. In general, preliminary results from this study indicate the new ECS PAL program successfully attracts URM students and thus has the potential to support their persistence and STEM workforce readiness. Additionally, undergraduate students across both Colleges who participated in the inaugural Hornet Leadership Program gained non-technical skills and experiences directly linked to competitiveness and preparation for workforce entry and graduate programs. Finally, faculty surveys and the faculty professional development workshop indicate that faculty value student leadership development, but identify barriers to accomplishing this work. 
    more » « less
  4. Female, Black, Latinx, Native American, low-income, and rural students remain underrepresented among computer science undergraduate degree recipients. Along with student, family, and secondary school characteristics, college organizational climate, curricula, and instructional practices shape undergraduates’ experiences that foster persistence until graduation. Our quasi-experimental project, Improving the Persistence and Success of Students from Underrepresented Populations in Computer Science (I-PASS), is designed to augment students’ persistence until they earn their computer science degree. Drawing on prior research, including Tinto's model of effective institutional actions for retention, I-PASS Scholars—all low-income, female and/or members of underserved demographics groups— receive a four-year scholarship; mentoring, tutoring, advising; and opportunities to integrate into the academic and social life of the campus. Students’ written reflections and attitude surveys suggest I-PASS's components foster their retention by, among other mechanisms, enhancing their computer science identity development and sense of belonging in the major. 
    more » « less
  5. The science, technology, engineering and mathematics (STEM) workforce contributes to the U.S. economy by supporting 67% of jobs and 69% of the gross domestic product [1]. Currently, there is an increased demand for engineering and computer science (E/CS) professionals, particularly those from underrepresented (e.g., gender, racial, ethnic) and underserved (socio-economic, geographically isolated) groups who bring diversity of thought and experience to the national E/CS workforce [2]. Correspondingly, educational institutions are called upon to develop capabilities to attract, engage, and retain students from these diverse backgrounds in E/CS programs of study. To encourage and enable diverse students to opt into and persist within E/CS programs of study, there is a critical need to engage students in supportive and enriching opportunities from which to learn and grow. The importance of student engagement for promoting student growth and development has been researched to such an extent that its utility is widely agreed upon [5]. Importantly, it has been shown that both academic and extracurricular aspects of a student’s learning processes are characterized by engagement [6]. High Impact Educational Practices (HIP) provide useful opportunities for deep student engagement and, thus, positively influence student retention and persistence [4]. Kuh [3] identified eleven curricular and extracurricular HIP (i.e., collaborative assignments and projects, common intellectual experiences, eportfolios, first year seminars and experiences, global learning and study abroad, internships, learning communities, senior culminating experiences, service and community-based learning, undergraduate research, and writing intensive courses). In computer science and engineering education fields, however, the extent to which HIP affects persistence and retention has not been fully investigated. This project aims to examine E/CS undergraduate student engagement in HIP and to understand the factors that contribute to positive engagement experiences. 
    more » « less