ABSTRACT In eukaryotic cells, the s oluble N -ethylmaleimide- s ensitive f actor (NSF) a ttachment protein re ceptor (SNARE) proteins comprise the minimal machinery that triggers fusion of transport vesicles with their target membranes. Comparative studies revealed that genes encoding the components of the SNARE system are highly conserved in yeast, insect, and human genomes. Upon infection of insect cells by the virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the transcript levels of most SNARE genes initially were upregulated. We found that overexpression of dominant-negative (DN) forms of NSF or knockdown of the expression of NSF, the key regulator of the SNARE system, significantly affected infectious AcMNPV production. In cells expressing DN NSF, entering virions were trapped in the cytoplasm or transported to the nucleus with low efficiency. The presence of DN NSF also moderately reduced trafficking of the viral envelope glycoprotein GP64 to the plasma membrane but dramatically inhibited production of infectious budded virions (BV). Transmission electron microscopy analysis of infections in cells expressing DN NSF revealed that progeny nucleocapsids were retained in a perinuclear space surrounded by inner and outer nuclear membranes. Several baculovirus conserved (core) proteins (Ac76, Ac78, GP41, Ac93, and Ac103) that are important for infectiousmore »
This content will become publicly available on July 1, 2023
glupyter: Enabling multi-dimensional linked data visualization with glue in the browser.. https://doi.org/10.5281/zenodo.6875831
Poster representing NSF award 1908419 for the NSF CSSI PI meeting to be held July 25/26, 2022
- Award ID(s):
- 1908419
- Publication Date:
- NSF-PAR ID:
- 10355108
- Journal Name:
- on zenodo (NSF CSSI PI meeting)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Applying for grants from the National Science Foundation (NSF) requires a paradigm shift at many community and technical colleges, because the primary emphasis at two-year colleges is on teaching. This shift is necessary because of the NSF expectation that a STEM faculty member will lead the project as Principal Investigator. Preparing successful NSF grant proposals also requires knowledge, skills, and strategies that differ from other sources from which two-year colleges seek grant funding. Since 2012, the Mentor-Connect project has been working to build capacity among two-year colleges and leadership skills among their STEM faculty to help them prepare competitive grant proposals for the National Science Foundation’s Advanced Technological Education (NSF-ATE) program. NSF-ATE focuses on improving the education of technicians for advanced technology fields that drive the nation’s economy. As an NSF-ATE-funded initiative, Mentor-Connect has developed a three-pronged approach of mentoring, technical assistance, and digital resources to help potential grantees with the complexities of the proposal submission process. Grant funding makes it possible to provide this help at no cost to eligible, two-year college educators. Mentor-Connect support services for prospective grantees are available for those who are new to ATE (community or technical colleges that have not received an NSF ATEmore »
-
Applying for grants from the National Science Foundation (NSF) requires a paradigm shift at many community and technical colleges, because the primary emphasis at two-year colleges is on teaching. This shift is necessary because of the NSF expectation that a STEM faculty member will lead the project as Principal Investigator. Preparing successful NSF grant proposals also requires knowledge, skills, and strategies that differ from other sources from which two-year colleges seek grant funding. Since 2012, the Mentor-Connect project has been working to build capacity among two-year colleges and leadership skills among their STEM faculty to help them prepare competitive grant proposals for the National Science Foundation’s Advanced Technological Education (NSF-ATE) program. NSF-ATE focuses on improving the education of technicians for advanced technology fields that drive the nation’s economy. As an NSF-ATE-funded initiative, Mentor-Connect has developed a three-pronged approach of mentoring, technical assistance, and digital resources to help potential grantees with the complexities of the proposal submission process. Grant funding makes it possible to provide this help at no cost to eligible, two-year college educators. Mentor-Connect support services for prospective grantees are available for those who are new to ATE (community or technical colleges that have not received an NSF ATEmore »
-
Securing external funding to improve or expand engineering technology and related programs is increasingly essential as state funding for two-year technical and community colleges plummets nationwide. Grants often provide the impetus and means for innovation that would not otherwise be possible. The National Science Foundation Advanced Technological Education (NSF-ATE) program has a unique focus on two-year colleges and technician education. However, the funding rate for the program recently declined to 22% and the proposal submission process is complex. NSF also has an agency-wide mission to encourage diverse populations to participate in science, technology, engineering, and mathematics (STEM). The Mentor-Connect: Leadership Development and Outreach for ATE Initiative project, NSF DUE #1204463 and #1501183 awarded to Florence-Darlington Technical College, Florence, South Carolina offers an efficient way for prospective principal investigators to learn effective proposal preparation strategies specific to this funding program and to receive cost-free assistance that helps them gain the competitive edge. Mentor-Connect also addresses NSF’s diversity goals. As a leadership development and outreach project for NSF-ATE, the project uses a three-pronged approach to support potential grantees. It offers mentoring, technical assistance, and digital resources. The project’s immediate goals are to help STEM faculty prepare competitive grant proposals and to improvemore »
-
Securing external funding to improve or expand engineering technology and related programs is increasingly essential as state funding for two-year technical and community colleges plummets nationwide. Grants often provide the impetus and means for innovation that would not otherwise be possible. The National Science Foundation Advanced Technological Education (NSF-ATE) program has a unique focus on two-year colleges and technician education. However, the funding rate for the program recently declined to 22% and the proposal submission process is complex. NSF also has an agency-wide mission to encourage diverse populations to participate in science, technology, engineering, and mathematics (STEM). The Mentor-Connect: Leadership Development and Outreach for ATE Initiative project, NSF DUE #1204463 and #1501183 awarded to Florence-Darlington Technical College, Florence, South Carolina offers an efficient way for prospective principal investigators to learn effective proposal preparation strategies specific to this funding program and to receive cost-free assistance that helps them gain the competitive edge. Mentor-Connect also addresses NSF’s diversity goals. As a leadership development and outreach project for NSF-ATE, the project uses a three-pronged approach to support potential grantees. It offers mentoring, technical assistance, and digital resources. The project’s immediate goals are to help STEM faculty prepare competitive grant proposals and to improvemore »