Abstract The seminal work of DiPerna and Lions (Invent Math 98(3):511–547, 1989) guarantees the existence and uniqueness of regular Lagrangian flows for Sobolev vector fields. The latter is a suitable selection of trajectories of the related ODE satisfying additional compressibility/semigroup properties. A long-standing open question is whether the uniqueness of the regular Lagrangian flow is a corollary of the uniqueness of the trajectory of the ODE for a.e. initial datum. Using Ambrosio’s superposition principle, we relate the latter to the uniqueness of positive solutions of the continuity equation and we then provide a negative answer using tools introduced by Modena and Székelyhidi in the recent groundbreaking work (Modena and Székelyhidi in Ann PDE 4(2):38, 2018). On the opposite side, we introduce a new class of asymmetric Lusin–Lipschitz inequalities and use them to prove the uniqueness of positive solutions of the continuity equation in an integrability range which goes beyond the DiPerna–Lions theory.
more »
« less
Large time behavior, bi-Hamiltonian structure, and kinetic formulation for a complex Burgers equation
We prove the existence and uniqueness of positive analytical solutions with positive initial data to the mean field equation (the Dyson equation) of the Dyson Brownian motion through the complex Burgers equation with a force term on the upper half complex plane. These solutions converge to a steady state given by Wigner’s semicircle law. A unique global weak solution with nonnegative initial data to the Dyson equation is obtained, and some explicit solutions are given by Wigner’s semicircle laws. We also construct a bi-Hamiltonian structure for the system of real and imaginary components of the complex Burgers equation (coupled Burgers system). We establish a kinetic formulation for the coupled Burgers system and prove the existence and uniqueness of entropy solutions. The coupled Burgers system in Lagrangian variable naturally leads to two interacting particle systems, the Fermi–Pasta–Ulam–Tsingou model with nearest-neighbor interactions, and the Calogero–Moser model. These two particle systems yield the same Lagrangian dynamics in the continuum limit.
more »
« less
- PAR ID:
- 10355154
- Date Published:
- Journal Name:
- Quarterly of Applied Mathematics
- Volume:
- 79
- Issue:
- 1
- ISSN:
- 0033-569X
- Page Range / eLocation ID:
- 55 to 102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conservation laws are fomulated for systems of dierential equations by using symmetries and adjoint symmetries, and an application to systems of evolution equations is made, together with illustrative examples. The formulation does not require the existence of a Lagrangian for a given system, and the presented examples include computations of conserved densities for the heat equation, Burgers' equation and the Korteweg-de Vries equation.more » « less
-
null (Ed.)For hyperbolic systems of conservation laws, uniqueness of solutions is still largely open. We aim to expand the theory of uniqueness for systems of conservation laws. One difficulty is that many systems have only one entropy. This contrasts with scalar conservation laws, where many entropies exist. It took until 1994 to show that one entropy is enough to ensure uniqueness of solutions for the scalar conservation laws (see [E. Yu. Panov, Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Mat. Z. 55(5) (1994) 116–129 (in Russian), Math. Notes 55(5) (1994) 517–525]. This single entropy result was proven again by De Lellis, Otto and Westdickenberg about 10 years later [Minimal entropy conditions for Burgers equation, Quart. Appl. Math. 62(4) (2004) 687–700]. These two proofs both rely on the special connection between Hamilton–Jacobi equations and scalar conservation laws in one space dimension. However, this special connection does not extend to systems. In this paper, we prove the single entropy result for scalar conservation laws without using Hamilton–Jacobi. Our proof lays out new techniques that are promising for showing uniqueness of solutions in the systems case.more » « less
-
Abstract We study the existence and uniqueness of solutions to the vector field Peierls–Nabarro (PN) model for curved dislocations in a transversely isotropic medium. Under suitable assumptions for the misfit potential on the slip plane, we reduce the 3D PN model to a nonlocal scalar Ginzburg–Landau equation. For a particular range of elastic coefficients, the nonlocal scalar equation with explicit nonlocal positive kernel is derived. We prove that any stable steady solution has a one-dimensional profile. As a result, we obtain that solutions to the scalar equation, as well as the original 3D system, are characterized as a one-parameter family of straight dislocations. This paper generalizes results found previously for the full isotropic case to an anisotropic setting.more » « less
-
Abstract In Jayanti and Trivisa (2022 J. Math. Fluid Mech. 24 46), the authors proved the existence of local-in-time weak solutions to a model of superfluidity. The system of governing equations was derived in Pitaevskii (1959 Sov. Phys. JETP 8 282–287) and couples the nonlinear Schrödinger equation and the Navier–Stokes equations. In this article, we prove a weak–strong type uniqueness theorem for these weak solutions. Only some of their regularity properties are used, allowing room for improved existence theorems in the future, with compatible uniqueness results.more » « less