skip to main content

Title: Large time behavior, bi-Hamiltonian structure, and kinetic formulation for a complex Burgers equation
We prove the existence and uniqueness of positive analytical solutions with positive initial data to the mean field equation (the Dyson equation) of the Dyson Brownian motion through the complex Burgers equation with a force term on the upper half complex plane. These solutions converge to a steady state given by Wigner’s semicircle law. A unique global weak solution with nonnegative initial data to the Dyson equation is obtained, and some explicit solutions are given by Wigner’s semicircle laws. We also construct a bi-Hamiltonian structure for the system of real and imaginary components of the complex Burgers equation (coupled Burgers system). We establish a kinetic formulation for the coupled Burgers system and prove the existence and uniqueness of entropy solutions. The coupled Burgers system in Lagrangian variable naturally leads to two interacting particle systems, the Fermi–Pasta–Ulam–Tsingou model with nearest-neighbor interactions, and the Calogero–Moser model. These two particle systems yield the same Lagrangian dynamics in the continuum limit.
Authors:
; ;
Award ID(s):
2106988 1812573
Publication Date:
NSF-PAR ID:
10355154
Journal Name:
Quarterly of Applied Mathematics
Volume:
79
Issue:
1
Page Range or eLocation-ID:
55 to 102
ISSN:
0033-569X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The seminal work of DiPerna and Lions (Invent Math 98(3):511–547, 1989) guarantees the existence and uniqueness of regular Lagrangian flows for Sobolev vector fields. The latter is a suitable selection of trajectories of the related ODE satisfying additional compressibility/semigroup properties. A long-standing open question is whether the uniqueness of the regular Lagrangian flow is a corollary of the uniqueness of the trajectory of the ODE for a.e. initial datum. Using Ambrosio’s superposition principle, we relate the latter to the uniqueness of positive solutions of the continuity equation and we then provide a negative answer using tools introduced by Modena and Székelyhidi in the recent groundbreaking work (Modena and Székelyhidi in Ann PDE 4(2):38, 2018). On the opposite side, we introduce a new class of asymmetric Lusin–Lipschitz inequalities and use them to prove the uniqueness of positive solutions of the continuity equation in an integrability range which goes beyond the DiPerna–Lions theory.
  2. Abstract We focus on the existence and rigidity problems of the vectorial Peierls–Nabarro (PN) model for dislocations. Under the assumption that the misfit potential on the slip plane only depends on the shear displacement along the Burgers vector, a reduced non-local scalar Ginzburg–Landau equation with an anisotropic positive (if Poisson ratio belongs to (−1/2, 1/3)) singular kernel is derived on the slip plane. We first prove that minimizers of the PN energy for this reduced scalar problem exist. Starting from H 1/2 regularity, we prove that these minimizers are smooth 1D profiles only depending on the shear direction, monotonically and uniformly converge to two stable states at far fields in the direction of the Burgers vector. Then a De Giorgi-type conjecture of single-variable symmetry for both minimizers and layer solutions is established. As a direct corollary, minimizers and layer solutions are unique up to translations. The proof of this De Giorgi-type conjecture relies on a delicate spectral analysis which is especially powerful for nonlocal pseudo-differential operators with strong maximal principle. All these results hold in any dimension since we work on the domain periodic in the transverse directions of the slip plane. The physical interpretation of this rigidity result ismore »that the equilibrium dislocation on the slip plane only admits shear displacements and is a strictly monotonic 1D profile provided exclusive dependence of the misfit potential on the shear displacement.« less
  3. For hyperbolic systems of conservation laws, uniqueness of solutions is still largely open. We aim to expand the theory of uniqueness for systems of conservation laws. One difficulty is that many systems have only one entropy. This contrasts with scalar conservation laws, where many entropies exist. It took until 1994 to show that one entropy is enough to ensure uniqueness of solutions for the scalar conservation laws (see [E. Yu. Panov, Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Mat. Z. 55(5) (1994) 116–129 (in Russian), Math. Notes 55(5) (1994) 517–525]. This single entropy result was proven again by De Lellis, Otto and Westdickenberg about 10 years later [Minimal entropy conditions for Burgers equation, Quart. Appl. Math. 62(4) (2004) 687–700]. These two proofs both rely on the special connection between Hamilton–Jacobi equations and scalar conservation laws in one space dimension. However, this special connection does not extend to systems. In this paper, we prove the single entropy result for scalar conservation laws without using Hamilton–Jacobi. Our proof lays out new techniques that are promising for showing uniqueness of solutions in the systems case.
  4. Abstract We prove existence, uniqueness and non-negativity of solutions of certain integral equations describing the density of states u ( z ) in the spectral theory of soliton gases for the one dimensional integrable focusing nonlinear Schrödinger equation (fNLS) and for the Korteweg–de Vries (KdV) equation. Our proofs are based on ideas and methods of potential theory. In particular, we show that the minimising (positive) measure for a certain energy functional is absolutely continuous and its density u ( z ) ⩾ 0 solves the required integral equation. In a similar fashion we show that v ( z ), the temporal analog of u ( z ), is the difference of densities of two absolutely continuous measures. Together, the integral equations for u , v represent nonlinear dispersion relation for the fNLS soliton gas. We also discuss smoothness and other properties of the obtained solutions. Finally, we obtain exact solutions of the above integral equations in the case of a KdV condensate and a bound state fNLS condensate. Our results is a step towards a mathematical foundation for the spectral theory of soliton and breather gases, which appeared in work of El and Tovbis (2020 Phys. Rev. E 101 052207). Itmore »is expected that the presented ideas and methods will be useful for studying similar classes of integral equation describing, for example, breather gases for the fNLS, as well as soliton gases of various integrable systems.« less
  5. We study the focusing NLS equation in $R\mathbb{R}^N$ in the mass-supercritical and energy-subcritical (or intercritical ) regime, with $H^1$ data at the mass-energy threshold $\mathcal{ME}(u_0)=\mathcal{ME}(Q)$, where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the $H^1$-critical case, in dimensions $N = 3, 4, 5$, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, $Q^\pm$, besides the standing wave $e^{it}Q$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blow-up occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around themore »standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations.« less