skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: The Effect of Particle Composition and Concentration on the Partitioning Coefficient for Mercury in Three Ocean Basins
The downward flux of sinking particles is a prominent Hg removal and redistribution process in the ocean; however, it is not well-constrained. Using data from three U.S. GEOTRACES cruises including the Pacific, Atlantic, and Arctic Oceans, we examined the mercury partitioning coefficient, K d , in the water column. The data suggest that the K d varies widely over three ocean basins. We also investigated the effect of particle concentration and composition on K d by comparing the concentration of small-sized (1–51 μm) suspended particulate mass (SPM) as well as its compositional fractions in six different phases to the partitioning coefficient. We observed an inverse relationship between K d and suspended particulate mass, as has been observed for other metals and known as the “particle concentration effect,” that explains much of the variation in K d . Particulate organic matter (POM) and calcium carbonate (CaCO 3 ) dominated the Hg partitioning in all three ocean basins while Fe and Mn could make a difference in some places where their concentrations are elevated, such as in hydrothermal plumes. Finally, our estimated Hg residence time has a strong negative correlation with average log bulk K d , indicating that K d has significant effect on Hg residence time.  more » « less
Award ID(s):
2023031
NSF-PAR ID:
10355360
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Environmental Chemistry
Volume:
2
ISSN:
2673-4486
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We compile full ocean‐depth size‐fractionated (1–51 and >51 μm) particle concentration and composition of suspended particulate matter from three recent U.S. GEOTRACES cruises, and exploit detailed information of particle characteristics measured to give insights into controls on sinking velocity and mass flux. Our model integrates the concept of fractal scaling into Stokes' Law by incorporating one of two porosity‐size power law relationships that result in fractal dimensions of 1.4 and 2.1. The medians of pump‐derived total (>1 μm) mass flux in the upper 100 m of gyre stations are 285.1, 609.2, and 99.3 mg/m2/d in the North Atlantic, Eastern Tropical South Pacific, and Western Arctic Ocean cruises, respectively. In this data set, variations in particle concentration were generally more important than sinking velocity in controlling variations in mass flux. We examine different terms in a Stokes' Law model to explore how variations in particle and water column characteristics from these three cruises affect mass flux. The decomposition of different aspects of the Stokes' relationship sheds light on the lowest total mass flux of the three cruises in the Western Arctic, which could be explained by the Arctic having the lowest particle concentrations as well as the lowest sinking velocities due to having the smallest particle sizes and the most viscous water. This work shows the importance of both particle characteristics and size distribution for mass fluxes, and similar methods can be applied to existing and future size‐fractionated filtered particulate measurements to improve our understanding of the biological pump elsewhere.

     
    more » « less
  2. Abstract

    A considerable amount of particulate carbon produced by oceanic photosynthesis is exported to the deep-sea by the “gravitational pump” (~6.8 to 7.7 Pg C/year), sequestering it from the atmosphere for centuries. How particulate organic carbon (POC) is transformed during export to the deep sea however is not well understood. Here, we report that dominant suspended prokaryotes also found in sinking particles serve as informative tracers of particle export processes. In a three-year time series from oceanographic campaigns in the Pacific Ocean, upper water column relative abundances of suspended prokaryotes entrained in sinking particles decreased exponentially from depths of 75 to 250 m, conforming to known depth-attenuation patterns of carbon, energy, and mass fluxes in the epipelagic zone. Below ~250 m however, the relative abundance of suspended prokaryotes entrained in sinking particles increased with depth. These results indicate that microbial entrainment, colonization, and sinking particle formation are elevated at mesopelagic and bathypelagic depths. Comparison of suspended and sinking particle-associated microbes provides information about the depth-variability of POC export and biotic processes, that is not evident from biogeochemical data alone.

     
    more » « less
  3. Abstract

    Mercury (Hg) is a global pollutant whose atmospheric deposition is a major input to the terrestrial and oceanic ecosystems. Gas‐particle partitioning (GPP) of gaseous oxidized mercury (GOM) redistributes speciated Hg between gas and particulate phase and can subsequently alter Hg deposition flux. Most 3‐dimensional chemical transport models either neglected the Hg GPP process or parameterized it with measurement data limited in time and space. In this study, CMAQ‐newHg‐Br (Ye et al., 2018,https://doi.org/10.1002/2017ms001161) was updated to CMAQ‐newHg‐Br v2 by implementing a new GPP scheme and the most up‐to‐date Hg redox chemistry and was run for the northeastern United States over January‐November 2010. CMAQ‐newHg‐Br v2 reproduced the measured spatiotemporal distributions of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) concentrations and Hg wet deposition flux within reasonable ranges and simulated dry deposition flux in agreement with previous studies. The GPP scheme improved the simulation of PBM via increasing winter‐, spring‐ and fall‐time PBM concentrations by threefold. It also improved simulated Hg wet deposition flux with an increase of 2.1 ± 0.7 μgm2in the 11‐month accumulated amount, offsetting half of the decreasing effect of the updated chemistry (−4.2 ± 1.8 μgm2). Further, the GPP scheme captured the observedKp‐T relationship as reported in previous studies without using measurement data and showed advantages at night and in rural/remote areas where existing empirical parameterizations failed. Our study demonstrated CMAQ‐newHg‐Br v2 a promising assessment tool to quantify impacts of climate change and emission reduction policy on Hg cycling.

     
    more » « less
  4. Abstract. Evidence has accumulated that secondary organic aerosols (SOAs) exhibit complex morphologies with multiple phases that can adopt amorphous semisolid or glassy phase states. However, experimental analysis and numerical modeling on the formation and evolution of SOA still often employ equilibrium partitioning with an ideal mixing assumption in the particle phase. Here we apply the kinetic multilayer model of gas–particle partitioning (KM-GAP) to simulate condensation of semi-volatile species into a core–shell phase-separated particle to evaluate equilibration timescales of SOA partitioning. By varying bulk diffusivity and the activity coefficient of the condensing species in the shell, we probe the complex interplay of mass transfer kinetics and the thermodynamics of partitioning. We found that the interplay of non-ideality and phase state can impact SOA partitioning kinetics significantly. The effect of non-ideality on SOA partitioning is slight for liquid particles but becomes prominent in semisolid or solid particles. If the condensing species is miscible with a low activity coefficient in the viscous shell phase, the particle can reach equilibrium with the gas phase long before the dissolution of concentration gradients in the particle bulk. For the condensation of immiscible species with a high activity coefficient in the semisolid shell, the mass concentration in the shell may become higher or overshoot its equilibrium concentration due to slow bulk diffusion through the viscous shell for excess mass to be transferred to the core phase. Equilibration timescales are shorter for the condensation of lower-volatility species into semisolid shell; as the volatility increases, re-evaporation becomes significant as desorption is faster for volatile species than bulk diffusion in a semisolid matrix, leading to an increase in equilibration timescale. We also show that the equilibration timescale is longer in an open system relative to a closed system especially for partitioning of miscible species; hence, caution should be exercised when interpreting and extrapolating closed-system chamber experimental results to atmosphere conditions. Our results provide a possible explanation for discrepancies between experimental observations of fast particle–particle mixing and predictions of long mixing timescales in viscous particles and provide useful insights into description and treatment of SOA in aerosol models. 
    more » « less
  5. null (Ed.)
    Abstract. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic air pollutants. The dispersion of PAHs in the atmosphere is influenced by gas–particle partitioning and chemical loss. These processes are closely interlinked and may occur at vastly differing timescales, which complicates their mathematical description in chemical transport models. Here, we use a kinetic model that explicitly resolves mass transport and chemical reactions in the gas and particle phases to describe and explore the dynamic and non-equilibrium interplay of gas–particle partitioning and chemical losses of PAHs on soot particles. We define the equilibration timescale τeq of gas–particle partitioning as the e-folding time for relaxation of the system to the partitioning equilibrium. We find this metric to span from seconds to hours depending on temperature, particle surface area, and the type of PAH. The equilibration time can be approximated using a time-independent equation, τeq≈1kdes+kads, which depends on the desorption rate coefficient kdes and adsorption rate coefficient kads, both of which can be calculated from experimentally accessible parameters. The model reveals two regimes in which different physical processes control the equilibration timescale: a desorption-controlled and an adsorption-controlled regime. In a case study with the PAH pyrene, we illustrate how chemical loss can perturb the equilibrium particulate fraction at typical atmospheric concentrations of O3 and OH. For the surface reaction with O3, the perturbation is significant and increases with the gas-phase concentration of O3. Conversely, perturbations are smaller for reaction with the OH radical, which reacts with pyrene on both the surface of particles and in the gas phase. Global and regional chemical transport models typically approximate gas–particle partitioning with instantaneous-equilibration approaches. We highlight scenarios in which these approximations deviate from the explicitly coupled treatment of gas–particle partitioning and chemistry presented in this study. We find that the discrepancy between solutions depends on the operator-splitting time step and the choice of time step can help to minimize the discrepancy. The findings and techniques presented in this work not only are relevant for PAHs but can also be applied to other semi-volatile substances that undergo chemical reactions and mass transport between the gas and particle phase. 
    more » « less