skip to main content


Title: Discriminant Analysis under f-Divergence Measures
In statistical inference, the information-theoretic performance limits can often be expressed in terms of a statistical divergence between the underlying statistical models (e.g., in binary hypothesis testing, the error probability is related to the total variation distance between the statistical models). As the data dimension grows, computing the statistics involved in decision-making and the attendant performance limits (divergence measures) face complexity and stability challenges. Dimensionality reduction addresses these challenges at the expense of compromising the performance (the divergence reduces by the data-processing inequality). This paper considers linear dimensionality reduction such that the divergence between the models is maximally preserved. Specifically, this paper focuses on Gaussian models where we investigate discriminant analysis under five f-divergence measures (Kullback–Leibler, symmetrized Kullback–Leibler, Hellinger, total variation, and χ2). We characterize the optimal design of the linear transformation of the data onto a lower-dimensional subspace for zero-mean Gaussian models and employ numerical algorithms to find the design for general Gaussian models with non-zero means. There are two key observations for zero-mean Gaussian models. First, projections are not necessarily along the largest modes of the covariance matrix of the data, and, in some situations, they can even be along the smallest modes. Secondly, under specific regimes, the optimal design of subspace projection is identical under all the f-divergence measures considered, rendering a degree of universality to the design, independent of the inference problem of interest.  more » « less
Award ID(s):
1933107 1554482
NSF-PAR ID:
10355565
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Entropy
Volume:
24
Issue:
2
ISSN:
1099-4300
Page Range / eLocation ID:
188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Transformation-based methods have been an attractive approach in non-parametric inference for problems such as unconditional and conditional density estimation due to their unique hierarchical structure that models the data as flexible transformation of a set of common latent variables. More recently, transformation-based models have been used in variational inference (VI) to construct flexible implicit families of variational distributions. However, their use in both nonparametric inference and variational inference lacks theoretical justification. We provide theoretical justification for the use of non-linear latent variable models (NL-LVMs) in non-parametric inference by showing that the support of the transformation induced prior in the space of densities is sufficiently large in the L1 sense. We also show that, when a Gaussian process (GP) prior is placed on the transformation function, the posterior concentrates at the optimal rate up to a logarithmic factor. Adopting the flexibility demonstrated in the non-parametric setting, we use the NL-LVM to construct an implicit family of variational distributions, deemed GP-IVI. We delineate sufficient conditions under which GP-IVI achieves optimal risk bounds and approximates the true posterior in the sense of the Kullback–Leibler divergence. To the best of our knowledge, this is the first work on providing theoretical guarantees for implicit variational inference. 
    more » « less
  2. Summary Model selection is crucial both to high-dimensional learning and to inference for contemporary big data applications in pinpointing the best set of covariates among a sequence of candidate interpretable models. Most existing work implicitly assumes that the models are correctly specified or have fixed dimensionality, yet both model misspecification and high dimensionality are prevalent in practice. In this paper, we exploit the framework of model selection principles under the misspecified generalized linear models presented in Lv & Liu (2014), and investigate the asymptotic expansion of the posterior model probability in the setting of high-dimensional misspecified models. With a natural choice of prior probabilities that encourages interpretability and incorporates the Kullback–Leibler divergence, we suggest using the high-dimensional generalized Bayesian information criterion with prior probability for large-scale model selection with misspecification. Our new information criterion characterizes the impacts of both model misspecification and high dimensionality on model selection. We further establish the consistency of covariance contrast matrix estimation and the model selection consistency of the new information criterion in ultrahigh dimensions under some mild regularity conditions. Our numerical studies demonstrate that the proposed method enjoys improved model selection consistency over its main competitors. 
    more » « less
  3. Gaussian processes (GPs) offer a flexible class of priors for nonparametric Bayesian regression, but popular GP posterior inference methods are typically prohibitively slow or lack desirable finite-data guarantees on quality. We develop a scalable approach to approximate GP regression, with finite-data guarantees on the accuracy of our pointwise posterior mean and variance estimates. Our main contribution is a novel objective for approximate inference in the nonparametric setting: the preconditioned Fisher (pF) divergence. We show that unlike the Kullback–Leibler divergence (used in variational inference), the pF divergence bounds bounds the 2-Wasserstein distance, which in turn provides tight bounds on the pointwise error of mean and variance estimates. We demonstrate that, for sparse GP likelihood approximations, we can minimize the pF divergence bounds efficiently. Our experiments show that optimizing the pF divergence bounds has the same computational requirements as variational sparse GPs while providing comparable empirical performance—in addition to our novel finite-data quality guarantees. 
    more » « less
  4. Abstract

    Genome‐wide association studies (GWAS) are used to investigate genetic variants contributing to complex traits. Despite discovering many loci, a large proportion of “missing” heritability remains unexplained. Gene–gene interactions may help explain some of this gap. Traditionally, gene–gene interactions have been evaluated using parametric statistical methods such as linear and logistic regression, with multifactor dimensionality reduction (MDR) used to address sparseness of data in high dimensions. We propose a method for the analysis of gene–gene interactions across independent single‐nucleotide polymorphisms (SNPs) in two genes. Typical methods for this problem use statistics based on an asymptotic chi‐squared mixture distribution, which is not easy to use. Here, we propose a Kullback–Leibler‐type statistic, which follows an asymptotic, positive, normal distribution under the null hypothesis of no relationship between SNPs in the two genes, and normally distributed under the alternative hypothesis. The performance of the proposed method is evaluated by simulation studies, which show promising results. The method is also used to analyze real data and identifies gene–gene interactions amongRAB3A,MADD, andPTPRNon type 2 diabetes (T2D) status.

     
    more » « less
  5. Abstract

    Objective.Learning dynamical latent state models for multimodal spiking and field potential activity can reveal their collective low-dimensional dynamics and enable better decoding of behavior through multimodal fusion. Toward this goal, developing unsupervised learning methods that are computationally efficient is important, especially for real-time learning applications such as brain–machine interfaces (BMIs). However, efficient learning remains elusive for multimodal spike-field data due to their heterogeneous discrete-continuous distributions and different timescales.Approach.Here, we develop a multiscale subspace identification (multiscale SID) algorithm that enables computationally efficient learning for modeling and dimensionality reduction for multimodal discrete-continuous spike-field data. We describe the spike-field activity as combined Poisson and Gaussian observations, for which we derive a new analytical SID method. Importantly, we also introduce a novel constrained optimization approach to learn valid noise statistics, which is critical for multimodal statistical inference of the latent state, neural activity, and behavior. We validate the method using numerical simulations and with spiking and local field potential population activity recorded during a naturalistic reach and grasp behavior.Main results.We find that multiscale SID accurately learned dynamical models of spike-field signals and extracted low-dimensional dynamics from these multimodal signals. Further, it fused multimodal information, thus better identifying the dynamical modes and predicting behavior compared to using a single modality. Finally, compared to existing multiscale expectation-maximization learning for Poisson–Gaussian observations, multiscale SID had a much lower training time while being better in identifying the dynamical modes and having a better or similar accuracy in predicting neural activity and behavior.Significance.Overall, multiscale SID is an accurate learning method that is particularly beneficial when efficient learning is of interest, such as for online adaptive BMIs to track non-stationary dynamics or for reducing offline training time in neuroscience investigations.

     
    more » « less