skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Design of Pattern Reconfigurable Alford Loop Antennas
We present a step-by-step approach for designing a recofigurable Alford loop antenna (RALA). The design of an 3.5 GHz RALA is shown. The antenna is fabricated using a 1.6 mm thick double-sided FR4 substrate. We sweep antenna geometrical parameters and show the effect on antenna input impedance, reflection coefficient (S 11 ), and radiation patterns. The final antenna structure resonates at 3.5 GHz with eight directional and one omnidirectional radiation patterns. We also present a simplistic control circuit responsible for activating the antenna elements. Tri-state impedance matching- a major challenge in the design of RALA is also discussed and analyzed along with a proposed method for mitigation. 3D radiation patterns of the RALA was measured using an EMScan and a maximum gain of 4.5 dBi is found.  more » « less
Award ID(s):
1730140 1816387
PAR ID:
10355676
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 International Conference on Electromagnetics in Advanced Applications (ICEAA)
Page Range / eLocation ID:
197 to 202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A flexible, compact C-shaped coplanar waveguide- fed (CPW-fed) circularly polarized (CP) antenna is proposed for Internet of Things (IoT) applications. The antenna is designed on a polyethylene terephthalate (PET) substrate, enabling flexibility and the potential for conformal integration. The design achieves a wide 3-dB axial ratio bandwidth (ARBW) of 5.66 GHz (79.94%) from 4.25 GHz to 9.91 GHz, demonstrating excellent CP perfor- mance. Additionally, the antenna exhibits a broad 10-dB return loss bandwidth (RLBW) of 7.67 GHz (99.55%) spanning 3.87 GHz to 11.54 GHz, fully encompassing the ARBW. The antenna maintains a peak gain over 3.5 dB and radiation efficiency over 95% within the ARBW. This wide operational range makes the antenna suitable for a variety of wireless communication systems, including WiFi, WiMAX, and emerging 5G technologies. 
    more » « less
  2. This article proposes a novel compact wideband dielectric resonator antenna design that incorporates inhomogeneous material distribution in a cubic structure. Specifically, in this design, the cubic dielectric resonator antenna is divided into multiple small blocks, and a continuous genetic algorithm is employed to optimize the material property of each block in order to maximize the radiation bandwidth. As a result, a cubic dielectric resonator antenna with inhomogeneous material distributions is designed and tested. In measurement, the proposed compact dielectric resonator antenna design exhibits 64.9% impedance bandwidth (4.08–8 GHz), considerably higher than the bandwidth of the initial homogeneous dielectric resonator antenna. The maximum system gain achieved over the frequency range is 9 dB at 7 GHz, with a peak measured system efficiency of 90.6%. 
    more » « less
  3. This paper proposes a full-duplex (FD) antenna design with passive self-interference (SI) suppression for the 28 GHz mmWave band. The reduction in SI is achieved through the design of a novel configuration of stacked Electromagnetic Band Gap structures (EBGs), which create a high impedance path to travelling electromagnetic waves between the transmit and receive antenna elements. The EBG is composed of stacked patches on layers 1 and 2 of a four-layer stack-up configuration. We present the design, optimization, and prototyping of unit antenna elements, stacked EBGs, and integration of stacked EBGs with antenna elements. We also evaluate the design through both HFSS (High Frequency Structure Simulator) and over-the-air measurements in an anechoic chamber. Through extensive evaluations, we show that (i) compared to an architecture that does not use EBGs, the proposed novel stacked EBG design provides an average of 25 dB of additional reduction in SI over 1 GHz of bandwidth, (ii) unit antenna element has over 1 GHz of bandwidth at −10 dB return loss, and (iii) HFSS simulations show close correlation with actual measurement results; however, measured results could still be several dB lower or higher than predicted simulation results. For example, the gap between simulated and measured antenna gains is less than 1 dB for 26–28 GHz and 28.5–30 GHz frequencies, but almost 3 dB for 28–28.5 GHz frequency band. 
    more » « less
  4. Kakaraparty, Karthik; Mahbub, Ifana (Ed.)
    This paper presents design of a wearable flexible patch antenna and its corresponding SAR (specific absorption rate) analysis when placed on a human body. The substrate material used is polyimide with a thickness of 0.1 mm, and gold is used for the patch and ground material with 200 nm thickness. The di-electric constant and the tangent loss of the polyimide substrate are 3.5 and 0.0002, respectively. The dimensions of the proposed antenna are 30×30×0.1004 mm3. The designed antenna has the resonating frequency at 3.45 GHz and a bandwidth of 2.6 GHz. The far field gain of the designed antenna is 7.5 dBi. The SAR analysis generated an SAR value of 0.174 W/kg, which is within the safe limit of 2W/kg averaged over 10g of tissue as specified by the ICNIRP (International Commission of Non-Ionization Radiation Protection). This suggests that the designed antenna is safe and can be utilized for wireless wearable sensors. 
    more » « less
  5. null (Ed.)
    Composite Right-/Left-Handed (CRLH) Leaky-Wave Antennas (LWAs) are a class of radiating elements characterized by an electronically steerable radiation pattern. The design is comprised of a cascade of CRLH unit cells populated with varactor diodes. By varying the voltage across the varactor diodes, the antenna can steer its directional beam from broadside to backward and forward end-fire directions. In this paper, we discuss the design and experimental analysis of a miniaturized CRLH Leaky-Wave Antenna for the 2.4 GHz WiFi band. The miniaturization is achieved by etching Complementary Split-Ring Resonator (CSRR) underneath each CRLH unit cell. As opposed to the conventional LWA designs, we take advantage of a LWA layout that does not require thin interdigital capacitors; thus we significantly reduce the PCB manufacturing constraints required to achieve size reduction. The experimental results were compared with a nonminiaturized prototype in order to evaluate the differences in impedance and radiation characteristics. The proposed antenna is a significant achievement because it will enable CRLH LWAs to be a viable technology not only for wireless access points, but also potentially for mobile devices. 
    more » « less