skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Mirrornet : Learning Audio Synthesizer Controls Inspired by Sensorimotor Interaction
Experiments to understand the sensorimotor neural interactions in the human cortical speech system support the existence of a bidirectional flow of interactions between the auditory and motor regions. Their key function is to enable the brain to ‘learn’ how to control the vocal tract for speech production. This idea is the impetus for the recently proposed "MirrorNet", a constrained autoencoder architecture. In this paper, the MirrorNet is applied to learn, in an unsupervised manner, the controls of a specific audio synthesizer (DIVA) to produce melodies only from their auditory spectrograms. The results demonstrate how the MirrorNet discovers the synthesizer parameters to generate the melodies that closely resemble the original and those of unseen melodies, and even determine the best set parameters to approximate renditions of complex piano melodies generated by a different synthesizer. This generalizability of the MirrorNet illustrates its potential to discover from sensory data the controls of arbitrary motor-plants.  more » « less
Award ID(s):
1764010 1824198
PAR ID:
10355816
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Acoustics, Speech and Signal Processing
Page Range / eLocation ID:
946 to 950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rushworth, Matthew F. (Ed.)
    People of all ages display the ability to detect and learn from patterns in seemingly random stimuli. Referred to as statistical learning (SL), this process is particularly critical when learning a spoken language, helping in the identification of discrete words within a spoken phrase. Here, by considering individual differences in speech auditory–motor synchronization, we demonstrate that recruitment of a specific neural network supports behavioral differences in SL from speech. While independent component analysis (ICA) of fMRI data revealed that a network of auditory and superior pre/motor regions is universally activated in the process of learning, a frontoparietal network is additionally and selectively engaged by only some individuals (high auditory–motor synchronizers). Importantly, activation of this frontoparietal network is related to a boost in learning performance, and interference with this network via articulatory suppression (AS; i.e., producing irrelevant speech during learning) normalizes performance across the entire sample. Our work provides novel insights on SL from speech and reconciles previous contrasting findings. These findings also highlight a more general need to factor in fundamental individual differences for a precise characterization of cognitive phenomena. 
    more » « less
  2. Bizley, Jennifer K. (Ed.)
    Hearing one’s own voice is critical for fluent speech production as it allows for the detection and correction of vocalization errors in real time. This behavior known as the auditory feedback control of speech is impaired in various neurological disorders ranging from stuttering to aphasia; however, the underlying neural mechanisms are still poorly understood. Computational models of speech motor control suggest that, during speech production, the brain uses an efference copy of the motor command to generate an internal estimate of the speech output. When actual feedback differs from this internal estimate, an error signal is generated to correct the internal estimate and update necessary motor commands to produce intended speech. We were able to localize the auditory error signal using electrocorticographic recordings from neurosurgical participants during a delayed auditory feedback (DAF) paradigm. In this task, participants hear their voice with a time delay as they produced words and sentences (similar to an echo on a conference call), which is well known to disrupt fluency by causing slow and stutter-like speech in humans. We observed a significant response enhancement in auditory cortex that scaled with the duration of feedback delay, indicating an auditory speech error signal. Immediately following auditory cortex, dorsal precentral gyrus (dPreCG), a region that has not been implicated in auditory feedback processing before, exhibited a markedly similar response enhancement, suggesting a tight coupling between the 2 regions. Critically, response enhancement in dPreCG occurred only during articulation of long utterances due to a continuous mismatch between produced speech and reafferent feedback. These results suggest that dPreCG plays an essential role in processing auditory error signals during speech production to maintain fluency. 
    more » « less
  3. Stuttering is a neurodevelopmental speech disorder associated with motor timing that differs from non-stutterers. While neurodevelopmental disorders impacted by timing are associated with compromised auditory-motor integration and interoception, the interplay between those abilities and stuttering remains unexplored. Here, we studied the relationships between speech auditory-motor synchronization (a proxy for auditory-motor integration), interoceptive awareness, and self-reported stuttering severity using remotely delivered assessments. Results indicate that in general, stutterers and non-stutterers exhibit similar auditory-motor integration and interoceptive abilities. However, while speech auditory-motor synchrony (i.e., integration) and interoceptive awareness were not related, speech synchrony was inversely related to the speaker’s perception of stuttering severity as perceived by others, and interoceptive awareness was inversely related to self-reported stuttering impact. These findings support claims that stuttering is a heterogeneous, multi-faceted disorder such that uncorrelated auditory-motor integration and interoception measurements predicted different aspects of stuttering, suggesting two unrelated sources of timing differences associated with the disorder. 
    more » « less
  4. Decoding human speech from neural signals is essential for brain–computer interface (BCI) technologies that aim to restore speech in populations with neurological deficits. However, it remains a highly challenging task, compounded by the scarce availability of neural signals with corresponding speech, data complexity and high dimensionality. Here we present a novel deep learning-based neural speech decoding framework that includes an ECoG decoder that translates electrocorticographic (ECoG) signals from the cortex into interpretable speech parameters and a novel differentiable speech synthesizer that maps speech parameters to spectrograms. We have developed a companion speech-to-speech auto-encoder consisting of a speech encoder and the same speech synthesizer to generate reference speech parameters to facilitate the ECoG decoder training. This framework generates natural-sounding speech and is highly reproducible across a cohort of 48 participants. Our experimental results show that our models can decode speech with high correlation, even when limited to only causal operations, which is necessary for adoption by real-time neural prostheses. Finally, we successfully decode speech in participants with either left or right hemisphere coverage, which could lead to speech prostheses in patients with deficits resulting from left hemisphere damage. 
    more » « less
  5. When we vocalize, our brain distinguishes self-generated sounds from external ones. A corollary discharge signal supports this function in animals; however, in humans, its exact origin and temporal dynamics remain unknown. We report electrocorticographic recordings in neurosurgical patients and a connectivity analysis framework based on Granger causality that reveals major neural communications. We find a reproducible source for corollary discharge across multiple speech production paradigms localized to the ventral speech motor cortex before speech articulation. The uncovered discharge predicts the degree of auditory cortex suppression during speech, its well-documented consequence. These results reveal the human corollary discharge source and timing with far-reaching implication for speech motor-control as well as auditory hallucinations in human psychosis. 
    more » « less