This work aims at comparing the accuracy and overall performance of a low-Mach CFD solver and a fully-compressible CFD solver for direct numerical simulation (DNS) of nonequilibrium plasma assisted ignition (PAI) using a phenomenological model described in Castela et al. [1]. The phenomenological model describes the impact of nanosecond pulsed plasma discharges by introducing source terms in the reacting flow equations, instead of solving the detailed plasma kinetics at every time step of the discharge. Ultra-fast gas heating and dissociation ofO2 are attributed to the electronic excitation ofN2 and the subsequent quenching to ground state. This process is highly exothermic, and is responsible for dissociation of O2 to form O radicals; both of which promote faster ignition. Another relatively slower process of gas heating associated with vibrational-to-translational relaxation is also accounted for, by solving an additional vibrational energy transport equation. A fully-compressible CFD solver for high Mach (M>0.2) reacting flows, developed by extending the default rhoCentralFoam solver in OpenFOAM, is used to perform DNS of PAI in a 2D domain representing a cross section of a pin-to-pin plasma discharge configuration. The same case is also simulated using a low-Mach, pressure-based CFD solver, built by extending the default reactingFoam solver. Themore »
This content will become publicly available on April 1, 2023
On the Conservation of Turbulence Energy in Turbulence Transport Models
Abstract Zank et al. developed models describing the transport of low-frequency incompressible and nearly incompressible turbulence in inhomogeneous flows. The formalism was based on expressing the fluctuating variables in terms of the Elsässar variables and then taking “moments” subject to various closure hypotheses. The turbulence transport models are different according to whether the plasma beta regime is large, of order unity, or small. Here, we show explicitly that the three sets of turbulence transport models admit a conservation representation that resembles the well-known WKB transport equation for Alfvén wave energy density after introducing appropriate definitions of the “pressure” associated with the turbulent fluctuations. This includes introducing a distinct turbulent pressure tensor for 3D incompressible turbulence (the large plasma beta limit) and pressure tensors for quasi-2D and slab turbulence (the plasma beta order-unity or small regimes) that generalize the form of the WKB pressure tensor. Various limits of the different turbulent pressure tensors are discussed. However, the analogy between the conservation form of the turbulence transport models and the WKB model is not close for multiple reasons, including that the turbulence models express fully nonlinear physical processes unlike the strictly linear WKB description. The analysis presented here both serves as a more »
- Award ID(s):
- 1655280
- Publication Date:
- NSF-PAR ID:
- 10356041
- Journal Name:
- The Astrophysical Journal
- Volume:
- 928
- Issue:
- 2
- Page Range or eLocation-ID:
- 176
- ISSN:
- 0004-637X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Alfvén waves as excited in black hole accretion disks and neutron star magnetospheres are the building blocks of turbulence in relativistic, magnetized plasmas. A large reservoir of magnetic energy is available in these systems, such that the plasma can be heated significantly even in the weak turbulence regime. We perform high-resolution three-dimensional simulations of counter-propagating Alfvén waves, showing that an $E_{B_{\perp }}(k_{\perp }) \propto k_{\perp }^{-2}$ energy spectrum develops as a result of the weak turbulence cascade in relativistic magnetohydrodynamics and its infinitely magnetized (force-free) limit. The plasma turbulence ubiquitously generates current sheets, which act as locations where magnetic energy dissipates. We show that current sheets form as a natural result of nonlinear interactions between counter-propagating Alfvén waves. These current sheets form owing to the compression of elongated eddies, driven by the shear induced by growing higher-order modes, and undergo a thinning process until they break-up into small-scale turbulent structures. We explore the formation of current sheets both in overlapping waves and in localized wave packet collisions. The relativistic interaction of localized Alfvén waves induces both Alfvén waves and fast waves, and efficiently mediates the conversion and dissipation of electromagnetic energy in astrophysical systems. Plasma energization through reconnection in currentmore »
-
null (Ed.)ABSTRACT The microphysics of ∼ GeV cosmic ray (CR) transport on galactic scales remain deeply uncertain, with almost all studies adopting simple prescriptions (e.g. constant diffusivity). We explore different physically motivated, anisotropic, dynamical CR transport scalings in high-resolution cosmological Feedback In Realistic Environment (FIRE) simulations of dwarf and ∼L* galaxies where scattering rates vary with local plasma properties motivated by extrinsic turbulence (ET) or self-confinement (SC) scenarios, with varying assumptions about e.g. turbulent power spectra on un-resolved scales, Alfvén-wave damping, etc. We self-consistently predict observables including γ-rays (Lγ), grammage, residence times, and CR energy densities to constrain the models. We demonstrate many non-linear dynamical effects (not captured in simpler models) tend to enhance confinement. For example, in multiphase media, even allowing arbitrary fast transport in neutral gas does not substantially reduce CR residence times (or Lγ), as transport is rate-limited by the ionized WIM and ‘inner CGM’ gaseous halo (104–106 K gas within $\lesssim 10\!-\!30\,$ kpc), and Lγ can be dominated by trapping in small ‘patches’. Most physical ET models contribute negligible scattering of ∼1–10 GeV CRs, but it is crucial to account for anisotropy and damping (especially of fast modes) or else scattering rates would violate observations. We show that the most widelymore »
-
We discuss the phenomenon of energization of relativistic charged particles in three-dimensional incompressible MHD turbulence and the diffusive properties of the motion of the same particles. We show that the random electric field induced by turbulent plasma motion leads test particles moving in a simulated box to be accelerated in a stochastic way, a second-order Fermi process. A small fraction of these particles happen to be trapped in large scale structures, most likely formed due to the interaction of islands in the turbulence. Such particles get accelerated exponentially, provided their pitch angle satisfies some conditions. We discuss at length the characterization of the accelerating structure and the physical processes responsible for rapid acceleration. We also comment on the applicability of the results to realistic astrophysical turbulence.
-
Turbulent boundary layers subject to severe acceleration or strong favorable pressure gradient (FPG) are of fundamental and technological importance. Scientifically, they elicit great interest from the points of view of scaling laws, the complex interaction between the outer and inner regions, and the quasi-laminarization phenomenon. Many flows of industrial and technological applications are subject to strong acceleration such as convergent ducts, turbines blades and nozzles. Our recent numerical predictions (J. Fluid Mech., vol. 775, pp. 189-200, 2015) of turbulent boundary layers subject to very strong FPG with high spatial/temporal resolution, i.e. Direct Numerical Simulation (DNS), have shown a meaningful weakening of the Reynolds shear stresses with an evident logarithmic behavior. In the present study, assessment of three different turbulence models (Shear Stress Transport, k-w and Spalart-Allmaras, henceforth SST, k-w and SA, respectively) in Reynolds-averaged Navier-Stokes (RANS) simulations is performed. The main objective is to evaluate the ability of popular turbulence models in capturing the characteristic features present during the quasi-laminarization phenomenon in highly accelerating turbulent boundary layers. Favorable pressure gradient is prescribed by a top converging surface (sink flow) with an approximately constant acceleration parameter of K = 4.0 x 10^(-6). Furthermore, the quasi-laminarization effect on the temperature field ismore »