skip to main content


Title: Massive black hole mergers with orbital information: predictions from the ASTRID simulation
ABSTRACT

We examine massive black hole (MBH) mergers and their associated gravitational wave signals from the large-volume cosmological simulation Astrid . Astrid includes galaxy formation and black hole models recently updated with an MBH seed population between 3 × 104h−1M⊙ and 3 × 105h−1M⊙ and a sub-grid dynamical friction (DF) model to follow the MBH dynamics down to 1.5 ckpc h−1. We calculate the initial eccentricities of MBH orbits directly from the simulation at kpc-scales, and find orbital eccentricities above 0.7 for most MBH pairs before the numerical merger. After approximating unresolved evolution on scales below ${\sim 200\, \text{pc}}$, we find that the in-simulation DF on large scales accounts for more than half of the total orbital decay time ($\sim 500\, \text{Myr}$) due to DF. The binary hardening time is an order of magnitude longer than the DF time, especially for the seed-mass binaries (MBH < 2Mseed). As a result, only $\lesssim 20{{\rm per \,cent}}$ of seed MBH pairs merge at z > 3 after considering both unresolved DF evolution and binary hardening. These z > 3 seed-mass mergers are hosted in a biased population of galaxies with the highest stellar masses of $\gt 10^9\, {\rm M}_\odot$. With the higher initial eccentricity prediction from Astrid , we estimate an expected merger rate of 0.3−0.7 per year from the z > 3 MBH population. This is a factor of ∼7 higher than the prediction using the circular orbit assumption. The Laser Interferometer Space Antenna events are expected at a similar rate, and comprise $\gtrsim 60\,{\rm{per\,cent}}$ seed-seed mergers, $\sim 30\,{\rm{per\,cent}}$ involving only one seed-mass MBH, and $\sim 10\,{\rm{per\,cent}}$ mergers of non-seed MBHs.

 
more » « less
Award ID(s):
1817256
NSF-PAR ID:
10416603
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2220-2238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We examine the dual [both black hole (BH) active] and offset (one BH active and in distinct galaxies) active galactic nucleus (AGN) population (comprising ∼ 2000 pairs at $0.5\, \text{kpc}\lesssim \Delta r\lt 30\, \text{kpc}$) at z = 2 ∼ 3 in the ASTRID simulation covering (360 cMpc)3. The dual (offset) AGN make up 3.0(0.5) per cent of all AGN at z = 2. The dual fraction is roughly constant while the offset fraction increases by a factor of 10 from z = 4 ∼ 2. Compared with the full AGN population, duals are characterized by low MBH/M* ratios, high specific star formation rates (sSFR) of $\sim 1\, \text{Gyr}^{-1}$, and high Eddington ratios (∼0.05, double that of single AGN). Dual AGNs are formed in major galaxy mergers (typically involving $M_\text{halo}\lt 10^{13}\, M_\odot$), with simular-mass BHs. At small separations (when host galaxies are in the late phase of the merger), duals become 2 ∼ 8 times brighter (albeit more obscured) than at larger separations. 80  per cent of the bright, close duals would merge within $\sim 500\, \text{Myr}$. Notably, the initially less-massive BHs in duals frequently become the brighter AGN during galaxy mergers. In offset AGN, the active BH is typically ≳ 10 times more massive than its non-active counterpart and than most BHs in duals. Offsets are predominantly formed in minor galaxy mergers with the active BH residing in the centre of massive haloes ($M_\text{ halo}\sim 10^{13-14}\, \mathrm{M}_\odot$). In these deep potentials, gas stripping is common and the secondary quickly deactivates. The stripping also leads to inefficient orbital decay amongst offsets, which stall at $\Delta r\sim 5\, \text{kpc}$ for a few hundred Myrs.

     
    more » « less
  2. ABSTRACT

    In this work, we establish and test methods for implementing dynamical friction (DF) for massive black hole pairs that form in large volume cosmological hydrodynamical simulations that include galaxy formation and black hole growth. We verify our models and parameters both for individual black hole dynamics and for the black hole population in cosmological volumes. Using our model of DF from collisionless particles, black holes can effectively sink close to the galaxy centre, provided that the black hole’s dynamical mass is at least twice that of the lowest mass resolution particles in the simulation. Gas drag also plays a role in assisting the black holes’ orbital decay, but it is typically less effective than that from collisionless particles, especially after the first billion years of the black hole’s evolution. DF from gas becomes less than $1{{\ \rm per\ cent}}$ of DF from collisionless particles for BH masses >107 M⊙. Using our best DF model, we calculate the merger rate down to z = 1.1 using an Lbox = 35 Mpc h−1 simulation box. We predict ∼2 mergers per year for z > 1.1 peaking at z ∼ 2. These merger rates are within the range obtained in previous work using similar resolution hydrodynamical simulations. We show that the rate is enhanced by factor of ∼2 when DF is taken into account in the simulations compared to the no-DF run. This is due to ${\gt}40{{\ \rm per\ cent}}$ more black holes reaching the centre of their host halo when DF is added.

     
    more » « less
  3. ABSTRACT

    We use the ASTRID cosmological hydrodynamic simulation to investigate the properties and evolution of triple and quadruple massive black hole (MBH) systems at z = 2–3. Only a handful of MBH tuple systems have been detected to date. In ASTRID, we find 4 per cent of the $M_{\rm BH}\gt 10^7\, M_\odot$ are in tuples with $\Delta r_{\rm max} \lt 200\, {\rm kpc}$. The tuple systems span a range of separations with the majority of the observable AGN systems at Δr ∼ 50–100 kpc. They include some of the most massive BHs (up to $10^{10} \, M_\odot$) but with at least one of the components of $M_{\rm BH} \sim 10^7 \, {\rm M}_{\odot }$. Tuples’ host galaxies are typically massive with $M_* \sim 10^{10-11} \, M_\odot$. We find that $\gt 10~{{\ \rm per\ cent}}$ massive haloes with Mhalo > 1013 M⊙ host MBH tuples. Following the subsequent interactions between MBHs in tuples, we found that in $\sim 5~{{\ \rm per\ cent}}$ of the triplets all three MBHs merge within a Gyr, and 15 per cent go through one merger. As a by-product of the complex multigalaxy interaction of these systems, we also find that up to $\sim 5~{{\ \rm per\ cent}}$ of tuples lead to runaway MBHs. In ASTRID, virtually all of the ultramassive black holes ($\gt 10^{10} \, M_\odot$) have undergone a triple quasar phase, while for BHs with $M_{\rm BH} \sim 10^9 \, M_\odot$, this fraction drops to 50 per cent.

     
    more » « less
  4. ABSTRACT

    Massive black holes in the centres of galaxies today must have grown by several orders of magnitude from seed black holes formed at early times. Detecting a population of intermediate mass black holes (IMBHs) can provide constraints on these elusive BH seeds. Here, we use the large volume cosmological hydrodynamical simulation Astrid, which includes IMBH seeds and dynamical friction to investigate the population of IMBH seeds. Dynamical friction is largely inefficient at sinking and merging seed IMBHs at high-z. This leads to an extensive population (several hundred per galaxy) of wandering IMBHs in large haloes at $z\sim 2$. A small fraction of these IMBHs are detectable as HLXs, Hyper Luminous X-ray sources. Importantly, at $z\sim 2$, IMBHs mergers produce the peak of GW events. We find close to a million GW events in Astrid between $z=\rm{2\!-\!3}$ involving seed IMBH mergers. These GW events (almost all detectable by LISA) at cosmic noon should provide strong constraints on IMBH seed models and their formation mechanisms. At the centre of massive galaxies, where the number of IMBHs can be as high as 10–100, SMBH-IMBH pairs can form. These Intermediate mass ratio inspirals (IMRIs) and extreme mass ratio inspirals (EMRIs), will require the next generation of milli-$\mu$Hz space-based GW interferometers to be detected. Large populations of IMBHs around massive black holes will probe their environments and MBH causal structure.

     
    more » « less
  5. ABSTRACT Accretion discs around supermassive black holes are promising sites for stellar mass black hole mergers detectable with LIGO. Here we present the results of Monte Carlo simulations of black hole mergers within 1-d AGN disc models. For the spin distribution in the disc bulk, key findings are: (1) The distribution of χeff is naturally centred around $\tilde{\chi }_{\rm eff} \approx 0.0$, (2) the width of the χeff distribution is narrow for low natal spins. For the mass distribution in the disc bulk, key findings are: (3) mass ratios $\tilde{q} \sim 0.5\!-\!0.7$, (4) the maximum merger mass in the bulk is $\sim 100\!-\!200\, \mathrm{M}_{\odot }$, (5) $\sim 1{{\ \rm per\ cent}}$ of bulk mergers involve BH $\gt 50\, \mathrm{M}_{\odot }$ with (6) $\simeq 80{{\ \rm per\ cent}}$ of bulk mergers are pairs of first generation BH. Additionally, mergers at a migration trap grow an IMBH with typical merger mass ratios $\tilde{q}\sim 0.1$. Ongoing LIGO non-detections of black holes $\gt 10^{2}\, \mathrm{M}_{\odot }$ puts strong limits on the presence of migration traps in AGN discs (and therefore AGN disc density and structure) as well as median AGN disc lifetime. The highest merger rate occurs for this channel if AGN discs are relatively short-lived (≤1 Myr) so multiple AGN episodes can happen per Galactic nucleus in a Hubble time. 
    more » « less