In this work, we establish and test methods for implementing dynamical friction (DF) for massive black hole pairs that form in large volume cosmological hydrodynamical simulations that include galaxy formation and black hole growth. We verify our models and parameters both for individual black hole dynamics and for the black hole population in cosmological volumes. Using our model of DF from collisionless particles, black holes can effectively sink close to the galaxy centre, provided that the black hole’s dynamical mass is at least twice that of the lowest mass resolution particles in the simulation. Gas drag also plays a role in assisting the black holes’ orbital decay, but it is typically less effective than that from collisionless particles, especially after the first billion years of the black hole’s evolution. DF from gas becomes less than $1{{\ \rm per\ cent}}$ of DF from collisionless particles for BH masses >107 M⊙. Using our best DF model, we calculate the merger rate down to z = 1.1 using an Lbox = 35 Mpc h−1 simulation box. We predict ∼2 mergers per year for z > 1.1 peaking at z ∼ 2. These merger rates are within the range obtained in previous work using similar resolution hydrodynamical simulations.more »
This content will become publicly available on June 16, 2023
 Award ID(s):
 1817256
 Publication Date:
 NSFPAR ID:
 10356106
 Journal Name:
 Monthly Notices of the Royal Astronomical Society
 Volume:
 514
 Issue:
 2
 Page Range or eLocationID:
 2220 to 2238
 ISSN:
 00358711
 Sponsoring Org:
 National Science Foundation
More Like this

ABSTRACT 
ABSTRACT Accretion discs around supermassive black holes are promising sites for stellar mass black hole mergers detectable with LIGO. Here we present the results of Monte Carlo simulations of black hole mergers within 1d AGN disc models. For the spin distribution in the disc bulk, key findings are: (1) The distribution of χeff is naturally centred around $\tilde{\chi }_{\rm eff} \approx 0.0$, (2) the width of the χeff distribution is narrow for low natal spins. For the mass distribution in the disc bulk, key findings are: (3) mass ratios $\tilde{q} \sim 0.5\!\!0.7$, (4) the maximum merger mass in the bulk is $\sim 100\!\!200\, \mathrm{M}_{\odot }$, (5) $\sim 1{{\ \rm per\ cent}}$ of bulk mergers involve BH $\gt 50\, \mathrm{M}_{\odot }$ with (6) $\simeq 80{{\ \rm per\ cent}}$ of bulk mergers are pairs of first generation BH. Additionally, mergers at a migration trap grow an IMBH with typical merger mass ratios $\tilde{q}\sim 0.1$. Ongoing LIGO nondetections of black holes $\gt 10^{2}\, \mathrm{M}_{\odot }$ puts strong limits on the presence of migration traps in AGN discs (and therefore AGN disc density and structure) as well as median AGN disc lifetime. The highest merger rate occurs for this channel if AGN discs aremore »

ABSTRACT Massive black hole (MBH) binary inspiral timescales are uncertain, and their spins are even more poorly constrained. Spin misalignment introduces asymmetry in the gravitational radiation, which imparts a recoil kick to the merged MBH. Understanding how MBH binary spins evolve is crucial for determining their recoil velocities, their gravitational wave (GW) waveforms detectable with Laser Interferometer Space Antenna, and their retention rate in galaxies. Here, we introduce a subresolution model for gas and gravitational wave (GW)driven MBH binary spin evolution using accreting MBHs from the Illustris cosmological hydrodynamic simulations. We also model binary inspiral via dynamical friction, stellar scattering, viscous gas drag, and GW emission. Our model assumes that the circumbinary disc always removes angular momentum from the binary. It also assumes differential accretion, which causes greater alignment of the secondary MBH spin in unequalmass mergers. We find that 47 per cent of the MBHs in our population merge by z = 0. Of these, 19 per cent have misaligned primaries and 10 per cent have misaligned secondaries at the time of merger in our fiducial model with initial eccentricity of 0.6 and accretion rates from Illustris. The MBH misalignment fraction depends strongly on the accretion disc parameters, however. Reducing accretion rates by a factor ofmore »

ABSTRACT We use the simba cosmological galaxy formation simulation to investigate the relationship between major mergers ($\lesssim$4:1), starbursts, and galaxy quenching. Mergers are identified via sudden jumps in stellar mass M* well above that expected from in situ star formation, while quenching is defined as going from specific star formation rate (sSFR) $\gt t_{\rm H}^{1}$ to $\lt 0.2t_{\rm H}^{1}$, where tH is the Hubble time. At z ≈ 0–3, mergers show ∼2–3× higher SFR than a massmatched sample of starforming galaxies, but globally represent $\lesssim 1{{\ \rm per\ cent}}$ of the cosmic SF budget. At low masses, the increase in SFR in mergers is mostly attributed to an increase in the H2 content, but for $M_*\gtrsim 10^{10.5} \,\mathrm{ M}_{\odot }$ mergers also show an elevated star formation efficiency suggesting denser gas within merging galaxies. The merger rate for starforming galaxies shows a rapid increase with redshift, ∝(1 + z)3.5, but the quenching rate evolves much more slowly, ∝(1 + z)0.9; there are insufficient mergers to explain the quenching rate at $z\lesssim 1.5$. simba first quenches galaxies at $z\gtrsim 3$, with a number density in good agreement with observations. The quenching timescales τq are strongly bimodal, with ‘slow’ quenchings (τq ∼ 0.1tH) dominating overall,more »

ABSTRACT The association of GRB170817A with a binary neutron star (BNS) merger has revealed that BNSs produce at least a fraction of short gammaray bursts (SGRBs). As gravitational wave (GW) detectors push their horizons, it is important to assess coupled electromagnetic (EM)/GW probabilities and maximize observational prospects. Here, we perform BNS population synthesis calculations with the code mobse, seeding the binaries in galaxies at three representative redshifts, $z$ = 0.01, 0.1, and 1 of the Illustris TNG50 simulation. The binaries are evolved and their locations numerically tracked in the host galactic potentials until merger. Adopting the microphysics parameters of GRB170817A, we numerically compute the broadband light curves of jets from BNS mergers, with the afterglow brightness dependent on the local medium density at the merger site. We perform Monte Carlo simulations of the resulting EM population assuming either a random viewing angle with respect to the jet, or a jet aligned with the orbital angular momentum of the binary, which biases the viewing angle probability for GWtriggered events. We find a gammaray detection probability of $\sim\!2{{\rm per\ cent}},10{{\rm per\ cent}},\mathrm{and}\ 40{{\rm per\ cent}}$ for BNSs at $z$ = 1, 0.1, and 0.01, respectively, for the random case, rising to $\sim\!75{{\rm per\ cent}}$more »