Opportunities to apply data mining techniques to analyze educational data and improve learning are increasing. A multitude of data are being produced by institutional technology, e-learning resources, and online and virtual courses. These data could be used by educators to analyze and understand the learning behaviors of students. The obtained data are raw data that must be analyzed, requiring educational data mining to predict useful information about students, such as academic performance, among other things. Many researchers have used traditional machine learning to predict the academic performance of students, and very little research has been conducted on the architecture of convolutional neural networks (CNNs) in the context of the pedagogical domain. We built a hybrid 2D CNN model by combining two different 2D CNN models to predict academic performance. Our sample comprised 1D data, so we transformed it to 2D image data to test the performance of our hybrid model. We compared the performance of our model with that of different traditional baseline models. Our model outperformed baseline models, such as k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, in terms of accuracy.
more »
« less
Predicting student outcomes using digital logs of learning behaviors: Review, current standards, and suggestions for future work
Abstract Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students’ learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students’ success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications.
more »
« less
- Award ID(s):
- 1821594
- PAR ID:
- 10356200
- Date Published:
- Journal Name:
- Behavior Research Methods
- ISSN:
- 1554-3528
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Even prior to the COVID-19 pandemic, online learning had become a fundamental part of post-secondary education. At the same time, empirical evidence from the last decade documents higher dropout online in comparison to face-to-face courses for some students. Thus, while online learning may provide students access to post-secondary education, concerns about academic momentum and degree attainment dominate the higher education online learning landscape. Because course completion is often used as a measure of effectiveness, there is a strong need for institutions to be able to predict the potential persistence of online students to direct efforts towards ameliorating dropout. Yet currently, a widely tested and validated archetypical predictive model of retention and success does not exist for undergraduate online learning. This integrative review of the literature examines evidence gathered over the last decade, organizing and summarizing major findings, to help identify potential undergraduate student characteristics for inclusion in such a model. The body of literature collected in this review suggests ten factors for consideration.more » « less
-
This work falls under the evidence-based practice type of paper. Online undergraduate engineering education is rapidly increasing in use. The online format not only provides greater flexibility and ease of access for students, but also has lower costs for universities when compared to face-to-face courses. Even with these generally positive attributes, online courses face challenges with respect to student attrition. Numerous studies have shown that the dropout rate in online courses is higher than that for in-person courses, and topics related to online student persistence remain of interest. Data describing student interactions with their Learning Management System (LMS) provide an important lens through which online student engagement and corresponding persistence decisions can be studied, but many engineering education researchers may lack experience in working with LMS interaction data. The purpose of this paper is to provide a concrete example for other engineering education researchers of how LMS interaction data from online undergraduate engineering courses can be prepared for analysis. The work presented here is part of a larger National Science Foundation-funded study dedicated to developing a theoretical model for online undergraduate engineering student persistence based on student LMS interaction activities and patterns. Our sample dataset includes six courses, two from electrical engineering and four from engineering management, offered during the fall 2018 semester at a large, public southwestern university. The LMS interaction data provides details about students’ navigations to and submissions of different course elements including quizzes, assignments, discussion forums, wiki pages, attachments, modules, the syllabus, the gradebook, and course announcements. Relatedly, the features created from the data in this study can be classified into three categories: 1) learning page views, which capture student interactions with course content, 2) procedural page views, which capture student navigation to course management activities, and 3) social page views, which capture learner-to-learner and learner-to-instructor interactions. The full paper will provide the rationale and details involved in choices related to data cleaning, manipulation, and feature creation. A complete list of features will also be included. These features will ultimately be combined with associative classification to discover relationships between student-LMS interactions and persistence decisions.more » « less
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)Collaborative game-based learning offers opportunities for students to participate in small group learning experiences that foster knowledge sharing, problem solving, and engagement. Student satisfaction with their collaborative experiences plays a pivotal role in shaping positive learning outcomes and is a critical factor in group success during learning. Gauging students申f satisfaction within collaborative learning contexts can offer insights into student engagement and participation levels while affording practitioners the ability to provide targeted interventions or scaffolding. In this paper,we propose a framework for inferring student collaboration satisfaction with multimodal learning analytics from collaborative interactions. Utilizing multimodal data collected from 50 middle school students engaged in collaborative game-based learning, we predict student collaboration satisfaction. We first evaluate the performance of baseline models on individual modalities for insight into which modalities are most informative. We then devise a multimodal deep learning model that leverages a cross-attention mechanism to attend to salient information across modalities to enhance collaboration satisfaction prediction. Finally,we conduct ablation and feature importance analysis to understand which combination of modalities and features is most effective. Findings indicate that various combinations of data sources are highly beneficial for student collaboration satisfaction prediction.more » « less
-
As evidence grows supporting the importance of non-cognitive factors in learning, computer-assisted learning platforms increasingly incorporate non-academic interventions to influence student learning and learning related-behaviors. Non-cognitive interventions often attempt to influence students’ mindset, motivation, or metacognitive reflection to impact learning behaviors and outcomes. In the current paper, we analyze data from five experiments, involving seven treatment conditions embedded in mastery-based learning activities hosted on a computer-assisted learning platform focused on middle school mathematics. Each treatment condition embodied a specific non-cognitive theoretical perspective. Over seven school years, 20,472 students participated in the experiments. We estimated the effects of each treatment condition on students’ response time, hint usage, likelihood of mastering knowledge components, learning efficiency, and post-tests performance. Our analyses reveal a mix of both positive and negative treatment effects on student learning behaviors and performance. Few interventions impacted learning as assessed by the post-tests. These findings highlight the difficulty in positively influencing student learning behaviors and outcomes using non-cognitive interventions.more » « less
An official website of the United States government

