Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Undergraduate science, technology, engineering, and mathematics (STEM) students’ motivations have a strong influence on whether and how they will persist through challenging coursework and into STEM careers. Proper conceptualization and measurement of motivation constructs, such as students’ expectancies and per- ceptions of value and cost (i.e., expectancy value theory [EVT]) and their goals (i.e., achievement goal theory [AGT]), are necessary to understand and enhance STEM persistence and success. Research findings suggest the importance of exploring multiple measurement models for motivation constructs, including traditional con- firmatory factor analysis, exploratory structural equation models (ESEM), and bifactor models, but more research is needed to determine whether the same model fits best across time and context. As such, we mea- sured undergraduate biology students’ EVT and AGT motivations and investigated which measurement model best fit the data, and whether measurement invariance held, across three semesters. Having determined the best- fitting measurement model and type of invariance, we used scores from the best performing model to predict biology achievement. Measurement results indicated a bifactor-ESEM model had the best data-model fit for EVT and an ESEM model had the best data-model fit for AGT, with evidence of measurement invariance across semesters. Motivation factors, in particular attainment value and subjective task value, predicted small yet statistically significant amounts of variance in biology course outcomes each semester. Our findings provide support for using modern measurement models to capture students’ STEM motivations and potentially refine conceptualizations of them. Such future research will enhance educators’ ability to benevolently monitor and support students’ motivation, and enhance STEM performance and career success.more » « less
-
The affordances of computer‐based learning environments make them powerful tools for conveying information in higher education. However, to most effectively use these environments, students must be adept at self‐regulating their learning. This self‐regulation is effortful, including a myriad of processes, including defining tasks, making plans, using and monitoring the efficacy of high‐quality learning strategies, and reflecting on the learning process and outcomes. Therefore, higher education instructors and course designers should design computer‐based learning environments to ease learning and free up mental resources for self‐regulation. This chapter describes how design principles from the cognitive theory of multimedia learning can facilitate learning in computer‐based learning environments and promote self‐regulated learning. Examples of the multimedia, personalization, and generative activity principles are presented to show how the cognitive theory of multimedia learning can guide design and promote students’ selection, organization, and integration of content, resulting in better understanding and more mental resources available for self‐regulated learning and the deeper learning it can afford.more » « less
-
Well-designed instructional videos are powerful tools for helping students learn and prompting students to use generative strategies while learning from videos further bolsters their effectiveness. However, little is known about how individual differences in motivational factors, such as achievement goals, relate to how students learn within multimedia environments that include instructional videos and generative strategies. Therefore, in this study, we explored how achievement goals predicted undergraduate students’ behaviors when learning with instructional videos that required students to answer practice questions between videos, as well as how those activities predicted subsequent unit exam performance one week later. Additionally, we tested the best measurement models for modeling achievement goals between traditional confirmatory factor analysis and bifactor confirmatory factor analysis. The bifactor model fit our data best and was used for all subsequent analyses. Results indicated that stronger mastery goal endorsement predicted performance on the practice questions in the multimedia learning environment, which in turn positively predicted unit exam performance. In addition, students’ time spent watching videos positively predicted practice question performance. Taken together, this research emphasizes the availing role of adaptive motivations, like mastery goals, in learning from instructional videos that prompt the use of generative learning strategies.more » « less
-
Abstract Using traces of behaviors to predict outcomes is useful in varied contexts ranging from buyer behaviors to behaviors collected from smart-home devices. Increasingly, higher education systems have been using Learning Management System (LMS) digital data to capture and understand students’ learning and well-being. Researchers in the social sciences are increasingly interested in the potential of using digital log data to predict outcomes and design interventions. Using LMS data for predicting the likelihood of students’ success in for-credit college courses provides a useful example of how social scientists can use these techniques on a variety of data types. Here, we provide a primer on how LMS data can be feature-mapped and analyzed to accomplish these goals. We begin with a literature review summarizing current approaches to analyzing LMS data, then discuss ethical issues of privacy when using demographic data and equitable model building. In the second part of the paper, we provide an overview of popular machine learning algorithms and review analytic considerations such as feature generation, assessment of model performance, and sampling techniques. Finally, we conclude with an empirical example demonstrating the ability of LMS data to predict student success, summarizing important features and assessing model performance across different model specifications.more » « less