skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visible light-assisted organocatalytic α-acyloxylation of ketones using carboxylic acids and N-halosuccinimides
The α-acyloxylcarbonyl motif can be found in many important pharmaceuticals and biologically active natural products and their derivatives. In this manuscript, the direct synthesis of α-acyloxylketones from ketones and readily available carboxylic acids was realized using a photo-assisted halogen bond-mediated organocatalytic α-acyloxylation reaction. The desired α-acyloxylation products were obtained in good to high yields.  more » « less
Award ID(s):
1664278
PAR ID:
10356318
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical communications
ISSN:
1364-548X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The direct C−H acyloxylation of polycyclic aromatic hydrocarbons (PAHs) with carboxylic acids as the acyloxylating agents was achieved via the electron‐donor‐acceptor (EDA) complexes between PAHs andN‐iodosuccinimide (NIS). This visible light‐assisted metal‐free C−H acyloxylation reaction provides an easy access to the desired aryl carboxylates from readily available PAHs and aliphatic and aromatic carboxylic acids under mild reaction conditions. magnified image 
    more » « less
  2. Abstract Structurally complex diazo‐containing scaffolds are formed by conjugate addition to vinyl diazonium salts. The electrophile, a little studied α‐diazonium‐α,β‐unsaturated carbonyl compound, is formed at low temperature under mild conditions by treating β‐hydroxy‐α‐diazo carbonyls with Sc(OTf)3. Conjugate addition occurs selectively at the 3‐position of indole to give α‐diazo‐β‐indole carbonyls, and enoxy silanes react to give 2‐diazo‐1,4‐dicarbonyl products. These reactions result in the formation of tertiary and quaternary centers, and give products that would be otherwise difficult to form. Importantly, the diazo functional group is retained within the molecule for future manipulation. Treating an α‐diazo ester indole addition product with Rh2(OAc)4caused a rearrangement to occur to give a 2‐(1H‐indol‐3‐yl)‐2‐enoate. In the case of diazo ketone compounds, this shift occurred spontaneously on prolonged exposure to the Lewis acidic reaction conditions. 
    more » « less
  3. Abstract. Chemical ionization mass spectrometry with the nitrate reagent ion (NO3- CIMS) was used to investigate the products of the nitrate radical(NO3) initiated oxidation of four monoterpenes in laboratory chamber experiments. α-Pinene, β-pinene, Δ-3-carene, andα-thujene were studied. The major gas-phase species produced in each system were distinctly different, showing the effect of monoterpenestructure on the oxidation mechanism and further elucidating the contributions of these species to particle formation and growth. By comparinggroupings of products based on the ratios of elements in the general formula CwHxNyOz, therelative importance of specific mechanistic pathways (fragmentation, termination, and radical rearrangement) can be assessed for eachsystem. Additionally, the measured time series of the highly oxidized reaction products provide insights into the ratio of relative production andloss rates of the high-molecular-weight products of the Δ-3-carene system. The measured effective O:C ratios of reaction products wereanticorrelated with new particle formation intensity and number concentration for each system; however, the monomer : dimer ratios of products had a smallpositive trend. Gas-phase yields of oxidation products measured by NO3- CIMS correlated with particle number concentrations for eachmonoterpene system, with the exception of α-thujene, which produced a considerable amount of low-volatility products but noparticles. Species-resolved wall loss was measured with NO3- CIMS and found to be highly variable among oxidized reaction products in ourstainless steel chamber. 
    more » « less
  4. Electrochemical conversion of biomass-derived intermediate compounds to high-value products has emerged as a promising approach in the field of biorefinery. Biomass upgrading allows for the production of chemicals from non-fossil-based carbon sources and capitalization on electricity as a green energy input. Amino acids, as products of biomass upgrading, have received relatively little attention. Pharmaceutical and food industries will benefit from an alternative strategy for the production of amino acids that does not rely on inefficient fermentation processes. The use of renewable biomass resources as starting materials makes this proposed strategy more desirable. Herein, we report an electrochemical approach for the selective oxidation of biomass-derived α-hydroxyl acids to α-keto acids, followed by electrochemical reductive amination to yield amino acids as the final products. Such a strategy takes advantage of both reactions at the anode and cathode and produces amino acids under ambient conditions with high energy efficiency. A flow electrolyzer was also successfully employed for the conversion of α-hydroxyl acids to amino acids, highlighting its great potential for large-scale application. 
    more » « less
  5. null (Ed.)
    Construction of C–C bonds at the α-carbon is a challenging but synthetically indispensable approach to α-branched carbonyl motifs that are widely represented among drugs, natural products, and synthetic intermediates. Here, we describe a simple approach to generation of boron enolates in the absence of strong bases that allows for introduction of both α-alkyl and α-aryl groups in a reaction of readily accessible 1,2-dicarbonyls and organoboranes. Obviation of unselective, strongly basic and nucleophilic reagents permits carrying out the reaction in the presence of electrophiles that intercept the intermediate boron enolates, resulting in two new α-C–C bonds in a tricomponent process. 
    more » « less