In the context of anti-de Sitter/conformal field theory , gravitational shockwaves serve as a geometric manifestation of boundary quantum chaos. We study this connection in general diffeomorphism-invariant theories involving an arbitrary number of bosonic fields. Specifically, we demonstrate that theories containing spin-2 or higher-spin fields generally admit classical localized shockwave solutions on black hole backgrounds, whereas spin-0 and spin-1 theories do not. As in the gravitational case, these higher-spin shockwaves provide a means to compute the out-of-time-order correlator. Both the Lyapunov exponent and the butterfly velocity are found to universally agree with predictions from pole skipping. In particular, higher-spin fields lead to a Lyapunov exponent that violates the chaos bound and a butterfly velocity that may exceed the speed of light.
more »
« less
Quantum chaos in a weakly-coupled field theory with nonlocality
A bstract In order to study the chaotic behavior of a system with non-local interactions, we will consider weakly coupled non-commutative field theories. We compute the Lyapunov exponent of this exponential growth in the large Moyal-scale limit to leading order in the t’Hooft coupling and 1/ N . We found that in this limit, the Lyapunov exponent remains comparable in magnitude to (and somewhat smaller than) the exponent in the commutative case. This can possibly be explained by the infrared sensitivity of the Lyapunov exponent. Another possible explanation is that in examples of weakly coupled non-commutative field theories, non-local contributions to various thermodynamic quantities are sub-dominant.
more »
« less
- PAR ID:
- 10356354
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 9
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We reconsider the problem of bounding higher derivative couplings in consistent weakly coupled gravitational theories, starting from general assumptions about analyticity and Regge growth of the S-matrix. Higher derivative couplings are expected to be of order one in the units of the UV cutoff. Our approach justifies this expectation and allows to prove precise bounds on the order one coefficients. Our main tool are dispersive sum rules for the S-matrix. We overcome the difficulties presented by the graviton pole by measuring couplings at small impact parameter, rather than in the forward limit. We illustrate the method in theories containing a massless scalar coupled to gravity, and in theories with maximal supersymmetry.more » « less
-
The ultimate regularity of quantum mechanics creates a tension with the assumption of classical chaos used in many of our pictures of chemical reaction dynamics. Out-of-time-order correlators (OTOCs) provide a quantum analog to the Lyapunov exponents that characterize classical chaotic motion. Maldacena, Shenker, and Stanford have suggested a fundamental quantum bound for the rate of information scrambling, which resembles a limit suggested by Herzfeld for chemical reaction rates. Here, we use OTOCs to study model reactions based on a double-well reaction coordinate coupled to anharmonic oscillators or to a continuum oscillator bath. Upon cooling, as one enters the tunneling regime where the reaction rate does not strongly depend on temperature, the quantum Lyapunov exponent can approach the scrambling bound and the effective reaction rate obtained from a population correlation function can approach the Herzfeld limit on reaction rates: Tunneling increases scrambling by expanding the state space available to the system. The coupling of a dissipative continuum bath to the reaction coordinate reduces the scrambling rate obtained from the early-time OTOC, thus making the scrambling bound harder to reach, in the same way that friction is known to lower the temperature at which thermally activated barrier crossing goes over to the low-temperature activationless tunneling regime. Thus, chemical reactions entering the tunneling regime can be information scramblers as powerful as the black holes to which the quantum Lyapunov exponent bound has usually been applied.more » « less
-
We use a combination of analytical and numerical methods to study out-of-time order correlators (OTOCs) in the sparse Sachdev-Ye-Kitaev (SYK) model. We find that at a given order of N, the standard result for the q-local, all-to-all SYK, obtained through the sum over ladder diagrams, is corrected by a series in the sparsity parameter, k. We present an algorithm to sum the diagrams at any given order of 1/(kq)n. We also study OTOCs numerically as a function of the sparsity parameter and determine the Lyapunov exponent. We find that numerical stability when extracting the Lyapunov exponent requires averaging over a massive number of realizations. This trade-off between the efficiency of the sparse model and consistent behavior at finite N becomes more significant for larger values of N.more » « less
-
A<sc>bstract</sc> We use a combination of analytical and numerical methods to study out-of-time order correlators (OTOCs) in the sparse Sachdev-Ye-Kitaev (SYK) model. We find that at a given order ofN, the standard result for theq-local, all-to-all SYK, obtained through the sum over ladder diagrams, is corrected by a series in the sparsity parameter,k. We present an algorithm to sum the diagrams at any given order of 1/(kq)n. We also study OTOCs numerically as a function of the sparsity parameter and determine the Lyapunov exponent. We find that numerical stability when extracting the Lyapunov exponent requires averaging over a massive number of realizations. This trade-off between the efficiency of the sparse model and consistent behavior at finiteNbecomes more significant for larger values ofN.more » « less
An official website of the United States government

